Properties

Label 136710gl
Number of curves $2$
Conductor $136710$
CM no
Rank $0$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
E = EllipticCurve("gl1")
 
E.isogeny_class()
 

Elliptic curves in class 136710gl

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
136710.l2 136710gl1 \([1, -1, 0, 27480, -663104]\) \(722458663317/476656000\) \(-1514108747088000\) \([]\) \(762048\) \(1.6016\) \(\Gamma_0(N)\)-optimal
136710.l1 136710gl2 \([1, -1, 0, -314295, 79714781]\) \(-1482713947827/325058560\) \(-752733318304235520\) \([]\) \(2286144\) \(2.1509\)  

Rank

sage: E.rank()
 

The elliptic curves in class 136710gl have rank \(0\).

Complex multiplication

The elliptic curves in class 136710gl do not have complex multiplication.

Modular form 136710.2.a.gl

sage: E.q_eigenform(10)
 
\(q - q^{2} + q^{4} - q^{5} - q^{8} + q^{10} - 3 q^{11} + 4 q^{13} + q^{16} - 6 q^{17} + q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

sage: E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the Cremona numbering.

\(\left(\begin{array}{rr} 1 & 3 \\ 3 & 1 \end{array}\right)\)

Isogeny graph

sage: E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with Cremona labels.