Show commands:
SageMath
E = EllipticCurve("q1")
E.isogeny_class()
Elliptic curves in class 137275q
sage: E.isogeny_class().curves
LMFDB label | Cremona label | Weierstrass coefficients | j-invariant | Discriminant | Torsion structure | Modular degree | Faltings height | Optimality |
---|---|---|---|---|---|---|---|---|
137275.q2 | 137275q1 | \([1, -1, 0, 2258, 1438791]\) | \(27/19\) | \(-895730099609375\) | \([2]\) | \(394240\) | \(1.5481\) | \(\Gamma_0(N)\)-optimal |
137275.q1 | 137275q2 | \([1, -1, 0, -178367, 28351916]\) | \(13312053/361\) | \(17018871892578125\) | \([2]\) | \(788480\) | \(1.8947\) |
Rank
sage: E.rank()
The elliptic curves in class 137275q have rank \(1\).
Complex multiplication
The elliptic curves in class 137275q do not have complex multiplication.Modular form 137275.2.a.q
sage: E.q_eigenform(10)
Isogeny matrix
sage: E.isogeny_class().matrix()
The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the Cremona numbering.
\(\left(\begin{array}{rr} 1 & 2 \\ 2 & 1 \end{array}\right)\)
Isogeny graph
sage: E.isogeny_graph().plot(edge_labels=True)
The vertices are labelled with Cremona labels.