sage:E = EllipticCurve("d1")
E.isogeny_class()
Elliptic curves in class 13754d
sage:E.isogeny_class().curves
LMFDB label |
Cremona label |
Weierstrass coefficients |
j-invariant |
Discriminant |
Torsion structure |
Modular degree |
Faltings height |
Optimality |
13754.e3 |
13754d1 |
[1,0,1,253,−2528] |
12167/26 |
−3848933114 |
[] |
8448 |
0.52352
|
Γ0(N)-optimal |
13754.e2 |
13754d2 |
[1,0,1,−2392,89518] |
−10218313/17576 |
−2601878785064 |
[] |
25344 |
1.0728
|
|
13754.e1 |
13754d3 |
[1,0,1,−243087,46110402] |
−10730978619193/6656 |
−985326877184 |
[] |
76032 |
1.6221
|
|
sage:E.rank()
The elliptic curves in class 13754d have
rank 1.
|
Bad L-factors: |
Prime |
L-Factor |
2 | 1+T |
13 | 1+T |
23 | 1 |
|
|
Good L-factors: |
Prime |
L-Factor |
Isogeny Class over Fp |
3 |
1+3T2 |
1.3.a
|
5 |
1−2T+5T2 |
1.5.ac
|
7 |
1−4T+7T2 |
1.7.ae
|
11 |
1+5T+11T2 |
1.11.f
|
17 |
1+7T+17T2 |
1.17.h
|
19 |
1+7T+19T2 |
1.19.h
|
29 |
1−5T+29T2 |
1.29.af
|
⋯ | ⋯ | ⋯ |
|
|
See L-function page for more information |
The elliptic curves in class 13754d do not have complex multiplication.
sage:E.q_eigenform(10)
sage:E.isogeny_class().matrix()
The i,j entry is the smallest degree of a cyclic isogeny between the i-th and j-th curve in the isogeny class, in the Cremona numbering.
⎝⎛139313931⎠⎞
sage:E.isogeny_graph().plot(edge_labels=True)
The vertices are labelled with Cremona labels.