Show commands:
SageMath
E = EllipticCurve("d1")
E.isogeny_class()
Elliptic curves in class 13754d
sage: E.isogeny_class().curves
LMFDB label | Cremona label | Weierstrass coefficients | j-invariant | Discriminant | Torsion structure | Modular degree | Faltings height | Optimality |
---|---|---|---|---|---|---|---|---|
13754.e3 | 13754d1 | \([1, 0, 1, 253, -2528]\) | \(12167/26\) | \(-3848933114\) | \([]\) | \(8448\) | \(0.52352\) | \(\Gamma_0(N)\)-optimal |
13754.e2 | 13754d2 | \([1, 0, 1, -2392, 89518]\) | \(-10218313/17576\) | \(-2601878785064\) | \([]\) | \(25344\) | \(1.0728\) | |
13754.e1 | 13754d3 | \([1, 0, 1, -243087, 46110402]\) | \(-10730978619193/6656\) | \(-985326877184\) | \([]\) | \(76032\) | \(1.6221\) |
Rank
sage: E.rank()
The elliptic curves in class 13754d have rank \(1\).
Complex multiplication
The elliptic curves in class 13754d do not have complex multiplication.Modular form 13754.2.a.d
sage: E.q_eigenform(10)
Isogeny matrix
sage: E.isogeny_class().matrix()
The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the Cremona numbering.
\(\left(\begin{array}{rrr} 1 & 3 & 9 \\ 3 & 1 & 3 \\ 9 & 3 & 1 \end{array}\right)\)
Isogeny graph
sage: E.isogeny_graph().plot(edge_labels=True)
The vertices are labelled with Cremona labels.