Properties

Label 137904.bk
Number of curves $2$
Conductor $137904$
CM no
Rank $0$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
E = EllipticCurve("bk1")
 
E.isogeny_class()
 

Elliptic curves in class 137904.bk

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
137904.bk1 137904bx1 \([0, -1, 0, -211137, -37270728]\) \(13478411517952/304317\) \(23502080551248\) \([2]\) \(645120\) \(1.6798\) \(\Gamma_0(N)\)-optimal
137904.bk2 137904bx2 \([0, -1, 0, -203532, -40087620]\) \(-754612278352/127035441\) \(-156973007344068864\) \([2]\) \(1290240\) \(2.0264\)  

Rank

sage: E.rank()
 

The elliptic curves in class 137904.bk have rank \(0\).

Complex multiplication

The elliptic curves in class 137904.bk do not have complex multiplication.

Modular form 137904.2.a.bk

sage: E.q_eigenform(10)
 
\(q - q^{3} + 2 q^{5} + 2 q^{7} + q^{9} - 2 q^{11} - 2 q^{15} - q^{17} - 6 q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

sage: E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rr} 1 & 2 \\ 2 & 1 \end{array}\right)\)

Isogeny graph

sage: E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.