Properties

Label 137904bi1
Conductor 137904137904
Discriminant 458944512-458944512
j-invariant 4287551 \frac{42875}{51}
CM no
Rank 22
Torsion structure Z/2Z\Z/{2}\Z

Related objects

Downloads

Learn more

Show commands: Magma / Oscar / PariGP / SageMath

Minimal Weierstrass equation

Minimal Weierstrass equation

Simplified equation

y2=x3x2+152x+688y^2=x^3-x^2+152x+688 Copy content Toggle raw display (homogenize, simplify)
y2z=x3x2z+152xz2+688z3y^2z=x^3-x^2z+152xz^2+688z^3 Copy content Toggle raw display (dehomogenize, simplify)
y2=x3+12285x+538434y^2=x^3+12285x+538434 Copy content Toggle raw display (homogenize, minimize)

comment: Define the curve
 
sage: E = EllipticCurve([0, -1, 0, 152, 688])
 
gp: E = ellinit([0, -1, 0, 152, 688])
 
magma: E := EllipticCurve([0, -1, 0, 152, 688]);
 
oscar: E = elliptic_curve([0, -1, 0, 152, 688])
 
sage: E.short_weierstrass_model()
 
magma: WeierstrassModel(E);
 
oscar: short_weierstrass_model(E)
 

Mordell-Weil group structure

ZZZ/2Z\Z \oplus \Z \oplus \Z/{2}\Z

magma: MordellWeilGroup(E);
 

Mordell-Weil generators

PPh^(P)\hat{h}(P)Order
(9,52)(9, 52)1.70730804708116878595892385091.7073080470811687859589238509\infty
(3,14)(-3, 14)2.68091458836380461699301320562.6809145883638046169930132056\infty
(4,0)(-4, 0)0022

Integral points

(4,0) \left(-4, 0\right) , (3,±14)(-3,\pm 14), (9,±52)(9,\pm 52), (12,±64)(12,\pm 64), (204,±2912)(204,\pm 2912) Copy content Toggle raw display

comment: Integral points
 
sage: E.integral_points()
 
magma: IntegralPoints(E);
 

Invariants

Conductor: NN  =  137904 137904  = 243132172^{4} \cdot 3 \cdot 13^{2} \cdot 17
comment: Conductor
 
sage: E.conductor().factor()
 
gp: ellglobalred(E)[1]
 
magma: Conductor(E);
 
oscar: conductor(E)
 
Discriminant: Δ\Delta  =  458944512-458944512 = 1212313317-1 \cdot 2^{12} \cdot 3 \cdot 13^{3} \cdot 17
comment: Discriminant
 
sage: E.discriminant().factor()
 
gp: E.disc
 
magma: Discriminant(E);
 
oscar: discriminant(E)
 
j-invariant: jj  =  4287551 \frac{42875}{51}  = 3153731713^{-1} \cdot 5^{3} \cdot 7^{3} \cdot 17^{-1}
comment: j-invariant
 
sage: E.j_invariant().factor()
 
gp: E.j
 
magma: jInvariant(E);
 
oscar: j_invariant(E)
 
Endomorphism ring: End(E)\mathrm{End}(E) = Z\Z
Geometric endomorphism ring: End(EQ)\mathrm{End}(E_{\overline{\Q}})  =  Z\Z    (no potential complex multiplication)
sage: E.has_cm()
 
magma: HasComplexMultiplication(E);
 
Sato-Tate group: ST(E)\mathrm{ST}(E) = SU(2)\mathrm{SU}(2)
Faltings height: hFaltingsh_{\mathrm{Faltings}} ≈ 0.348271774097971847885313936000.34827177409797184788531393600
gp: ellheight(E)
 
magma: FaltingsHeight(E);
 
oscar: faltings_height(E)
 
Stable Faltings height: hstableh_{\mathrm{stable}} ≈ 0.98611274582735764554529004585-0.98611274582735764554529004585
magma: StableFaltingsHeight(E);
 
oscar: stable_faltings_height(E)
 
abcabc quality: QQ ≈ 0.76817738115946250.7681773811594625
Szpiro ratio: σm\sigma_{m} ≈ 2.25890918437835262.2589091843783526

BSD invariants

Analytic rank: ranr_{\mathrm{an}} = 2 2
sage: E.analytic_rank()
 
gp: ellanalyticrank(E)
 
magma: AnalyticRank(E);
 
Mordell-Weil rank: rr = 2 2
comment: Rank
 
sage: E.rank()
 
gp: [lower,upper] = ellrank(E)
 
magma: Rank(E);
 
Regulator: Reg(E/Q)\mathrm{Reg}(E/\Q) ≈ 4.42788926775684283494793886164.4278892677568428349479388616
comment: Regulator
 
sage: E.regulator()
 
G = E.gen \\ if available
 
matdet(ellheightmatrix(E,G))
 
magma: Regulator(E);
 
Real period: Ω\Omega ≈ 1.11359326467329807767999961501.1135932646732980776799996150
comment: Real Period
 
sage: E.period_lattice().omega()
 
gp: if(E.disc>0,2,1)*E.omega[1]
 
magma: (Discriminant(E) gt 0 select 2 else 1) * RealPeriod(E);
 
Tamagawa product: pcp\prod_{p}c_p = 8 8  = 22121 2^{2}\cdot1\cdot2\cdot1
comment: Tamagawa numbers
 
sage: E.tamagawa_numbers()
 
gp: gr=ellglobalred(E); [[gr[4][i,1],gr[5][i][4]] | i<-[1..#gr[4][,1]]]
 
magma: TamagawaNumbers(E);
 
oscar: tamagawa_numbers(E)
 
Torsion order: #E(Q)tor\#E(\Q)_{\mathrm{tor}} = 22
comment: Torsion order
 
sage: E.torsion_order()
 
gp: elltors(E)[1]
 
magma: Order(TorsionSubgroup(E));
 
oscar: prod(torsion_structure(E)[1])
 
Special value: L(2)(E,1)/2! L^{(2)}(E,1)/2! ≈ 9.86173533058640380613054377739.8617353305864038061305437773
comment: Special L-value
 
r = E.rank();
 
E.lseries().dokchitser().derivative(1,r)/r.factorial()
 
gp: [r,L1r] = ellanalyticrank(E); L1r/r!
 
magma: Lr1 where r,Lr1 := AnalyticRank(E: Precision:=12);
 
Analytic order of Ш: Шan{}_{\mathrm{an}}  ≈  11    (rounded)
comment: Order of Sha
 
sage: E.sha().an_numerical()
 
magma: MordellWeilShaInformation(E);
 

BSD formula

9.861735331L(2)(E,1)/2!=?#Ш(E/Q)ΩEReg(E/Q)pcp#E(Q)tor211.1135934.4278898229.861735331\displaystyle 9.861735331 \approx L^{(2)}(E,1)/2! \overset{?}{=} \frac{\# Ш(E/\Q)\cdot \Omega_E \cdot \mathrm{Reg}(E/\Q) \cdot \prod_p c_p}{\#E(\Q)_{\rm tor}^2} \approx \frac{1 \cdot 1.113593 \cdot 4.427889 \cdot 8}{2^2} \approx 9.861735331

# self-contained SageMath code snippet for the BSD formula (checks rank, computes analytic sha)
 
E = EllipticCurve(%s); r = E.rank(); ar = E.analytic_rank(); assert r == ar;
 
Lr1 = E.lseries().dokchitser().derivative(1,r)/r.factorial(); sha = E.sha().an_numerical();
 
omega = E.period_lattice().omega(); reg = E.regulator(); tam = E.tamagawa_product(); tor = E.torsion_order();
 
assert r == ar; print("analytic sha: " + str(RR(Lr1) * tor^2 / (omega * reg * tam)))
 
/* self-contained Magma code snippet for the BSD formula (checks rank, computes analytic sha) */
 
E := EllipticCurve(%s); r := Rank(E); ar,Lr1 := AnalyticRank(E: Precision := 12); assert r eq ar;
 
sha := MordellWeilShaInformation(E); omega := RealPeriod(E) * (Discriminant(E) gt 0 select 2 else 1);
 
reg := Regulator(E); tam := &*TamagawaNumbers(E); tor := #TorsionSubgroup(E);
 
assert r eq ar; print "analytic sha:", Lr1 * tor^2 / (omega * reg * tam);
 

Modular invariants

Modular form 137904.2.a.p

qq34q7+q9+2q11+q172q19+O(q20) q - q^{3} - 4 q^{7} + q^{9} + 2 q^{11} + q^{17} - 2 q^{19} + O(q^{20}) Copy content Toggle raw display

comment: q-expansion of modular form
 
sage: E.q_eigenform(20)
 
\\ actual modular form, use for small N
 
[mf,F] = mffromell(E)
 
Ser(mfcoefs(mf,20),q)
 
\\ or just the series
 
Ser(ellan(E,20),q)*q
 
magma: ModularForm(E);
 

For more coefficients, see the Downloads section to the right.

Modular degree: 49152
comment: Modular degree
 
sage: E.modular_degree()
 
gp: ellmoddegree(E)
 
magma: ModularDegree(E);
 
Γ0(N) \Gamma_0(N) -optimal: yes
Manin constant: 1
comment: Manin constant
 
magma: ManinConstant(E);
 

Local data at primes of bad reduction

This elliptic curve is not semistable. There are 4 primes pp of bad reduction:

pp Tamagawa number Kodaira symbol Reduction type Root number ordp(N)\mathrm{ord}_p(N) ordp(Δ)\mathrm{ord}_p(\Delta) ordp(den(j))\mathrm{ord}_p(\mathrm{den}(j))
22 44 I4I_{4}^{*} additive -1 4 12 0
33 11 I1I_{1} nonsplit multiplicative 1 1 1 1
1313 22 IIIIII additive -1 2 3 0
1717 11 I1I_{1} split multiplicative -1 1 1 1

comment: Local data
 
sage: E.local_data()
 
gp: ellglobalred(E)[5]
 
magma: [LocalInformation(E,p) : p in BadPrimes(E)];
 
oscar: [(p,tamagawa_number(E,p), kodaira_symbol(E,p), reduction_type(E,p)) for p in bad_primes(E)]
 

Galois representations

The \ell-adic Galois representation has maximal image for all primes \ell except those listed in the table below.

prime \ell mod-\ell image \ell-adic image
22 2B 2.3.0.1

comment: mod p Galois image
 
sage: rho = E.galois_representation(); [rho.image_type(p) for p in rho.non_surjective()]
 
magma: [GaloisRepresentation(E,p): p in PrimesUpTo(20)];
 

gens = [[1, 0, 4, 1], [3, 4, 8, 11], [1, 2, 2, 5], [1, 4, 0, 1], [665, 1990, 1988, 663], [1094, 1, 779, 0], [2649, 4, 2648, 5], [2452, 1, 2039, 0], [886, 1, 883, 0]]
 
GL(2,Integers(2652)).subgroup(gens)
 
Gens := [[1, 0, 4, 1], [3, 4, 8, 11], [1, 2, 2, 5], [1, 4, 0, 1], [665, 1990, 1988, 663], [1094, 1, 779, 0], [2649, 4, 2648, 5], [2452, 1, 2039, 0], [886, 1, 883, 0]];
 
sub<GL(2,Integers(2652))|Gens>;
 

The image H:=ρE(Gal(Q/Q))H:=\rho_E(\Gal(\overline{\Q}/\Q)) of the adelic Galois representation has level 2652=2231317 2652 = 2^{2} \cdot 3 \cdot 13 \cdot 17 , index 1212, genus 00, and generators

(1041),(34811),(1225),(1401),(66519901988663),(109417790),(2649426485),(2452120390),(88618830)\left(\begin{array}{rr} 1 & 0 \\ 4 & 1 \end{array}\right),\left(\begin{array}{rr} 3 & 4 \\ 8 & 11 \end{array}\right),\left(\begin{array}{rr} 1 & 2 \\ 2 & 5 \end{array}\right),\left(\begin{array}{rr} 1 & 4 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 665 & 1990 \\ 1988 & 663 \end{array}\right),\left(\begin{array}{rr} 1094 & 1 \\ 779 & 0 \end{array}\right),\left(\begin{array}{rr} 2649 & 4 \\ 2648 & 5 \end{array}\right),\left(\begin{array}{rr} 2452 & 1 \\ 2039 & 0 \end{array}\right),\left(\begin{array}{rr} 886 & 1 \\ 883 & 0 \end{array}\right).

Input positive integer mm to see the generators of the reduction of HH to GL2(Z/mZ)\mathrm{GL}_2(\Z/m\Z):

The torsion field K:=Q(E[2652])K:=\Q(E[2652]) is a degree-788363476992788363476992 Galois extension of Q\Q with Gal(K/Q)\Gal(K/\Q) isomorphic to the projection of HH to GL2(Z/2652Z)\GL_2(\Z/2652\Z).

The table below list all primes \ell for which the Serre invariants associated to the mod-\ell Galois representation are exceptional.

\ell Reduction type Serre weight Serre conductor
22 additive 22 663=31317 663 = 3 \cdot 13 \cdot 17
33 nonsplit multiplicative 44 45968=2413217 45968 = 2^{4} \cdot 13^{2} \cdot 17
1313 additive 5050 816=24317 816 = 2^{4} \cdot 3 \cdot 17
1717 split multiplicative 1818 8112=243132 8112 = 2^{4} \cdot 3 \cdot 13^{2}

Isogenies

gp: ellisomat(E)
 

This curve has non-trivial cyclic isogenies of degree dd for d=d= 2.
Its isogeny class 137904bi consists of 2 curves linked by isogenies of degree 2.

Twists

The minimal quadratic twist of this elliptic curve is 8619m1, its twist by 4-4.

Growth of torsion in number fields

The number fields KK of degree less than 24 such that E(K)torsE(K)_{\rm tors} is strictly larger than E(Q)torsE(\Q)_{\rm tors} Z/2Z\cong \Z/{2}\Z are as follows:

[K:Q][K:\Q] KK E(K)torsE(K)_{\rm tors} Base change curve
22 Q(663)\Q(\sqrt{-663}) Z/2ZZ/2Z\Z/2\Z \oplus \Z/2\Z not in database
44 4.2.1792752.2 Z/4Z\Z/4\Z not in database
88 8.0.8359509266843904.42 Z/2ZZ/4Z\Z/2\Z \oplus \Z/4\Z not in database
88 deg 8 Z/2ZZ/4Z\Z/2\Z \oplus \Z/4\Z not in database
88 deg 8 Z/6Z\Z/6\Z not in database
1616 deg 16 Z/8Z\Z/8\Z not in database
1616 deg 16 Z/2ZZ/6Z\Z/2\Z \oplus \Z/6\Z not in database

We only show fields where the torsion growth is primitive. For fields not in the database, click on the degree shown to reveal the defining polynomial.

Iwasawa invariants

pp 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47
Reduction type add nonsplit ss ord ord add split ord ss ord ord ord ss ord ord
λ\lambda-invariant(s) - 2 2,2 2 2 - 3 2 2,2 2 2 2 2,2 4 2
μ\mu-invariant(s) - 0 0,0 0 0 - 0 0 0,0 0 0 0 0,0 0 0

An entry - indicates that the invariants are not computed because the reduction is additive.

pp-adic regulators

pp-adic regulators are not yet computed for curves that are not Γ0\Gamma_0-optimal.