Properties

Label 137904bl
Number of curves $2$
Conductor $137904$
CM no
Rank $1$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
E = EllipticCurve("bl1")
 
E.isogeny_class()
 

Elliptic curves in class 137904bl

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
137904.s2 137904bl1 \([0, -1, 0, -49573, -4020992]\) \(174456832000/9771957\) \(754677919923408\) \([2]\) \(645120\) \(1.6097\) \(\Gamma_0(N)\)-optimal
137904.s1 137904bl2 \([0, -1, 0, -782188, -266004116]\) \(42830942866000/146523\) \(181053064987392\) \([2]\) \(1290240\) \(1.9563\)  

Rank

sage: E.rank()
 

The elliptic curves in class 137904bl have rank \(1\).

Complex multiplication

The elliptic curves in class 137904bl do not have complex multiplication.

Modular form 137904.2.a.bl

sage: E.q_eigenform(10)
 
\(q - q^{3} - 2 q^{7} + q^{9} + q^{17} - 6 q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

sage: E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the Cremona numbering.

\(\left(\begin{array}{rr} 1 & 2 \\ 2 & 1 \end{array}\right)\)

Isogeny graph

sage: E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with Cremona labels.