Properties

Label 137904bl
Number of curves 22
Conductor 137904137904
CM no
Rank 11
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("bl1") E.isogeny_class()
 

Elliptic curves in class 137904bl

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
137904.s2 137904bl1 [0,1,0,49573,4020992][0, -1, 0, -49573, -4020992] 174456832000/9771957174456832000/9771957 754677919923408754677919923408 [2][2] 645120645120 1.60971.6097 Γ0(N)\Gamma_0(N)-optimal
137904.s1 137904bl2 [0,1,0,782188,266004116][0, -1, 0, -782188, -266004116] 42830942866000/14652342830942866000/146523 181053064987392181053064987392 [2][2] 12902401290240 1.95631.9563  

Rank

Copy content sage:E.rank()
 

The elliptic curves in class 137904bl have rank 11.

L-function data

 
Bad L-factors:
Prime L-Factor
2211
331+T1 + T
131311
17171T1 - T
 
Good L-factors:
Prime L-Factor Isogeny Class over Fp\mathbb{F}_p
55 13T+5T2 1 - 3 T + 5 T^{2} 1.5.ad
77 1+4T+7T2 1 + 4 T + 7 T^{2} 1.7.e
1111 1T+11T2 1 - T + 11 T^{2} 1.11.ab
1919 1+7T+19T2 1 + 7 T + 19 T^{2} 1.19.h
2323 1+T+23T2 1 + T + 23 T^{2} 1.23.b
2929 12T+29T2 1 - 2 T + 29 T^{2} 1.29.ac
\cdots\cdots\cdots
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 137904bl do not have complex multiplication.

Modular form 137904.2.a.bl

Copy content sage:E.q_eigenform(10)
 
qq32q7+q9+q176q19+O(q20)q - q^{3} - 2 q^{7} + q^{9} + q^{17} - 6 q^{19} + O(q^{20}) Copy content Toggle raw display

Isogeny matrix

Copy content sage:E.isogeny_class().matrix()
 

The i,ji,j entry is the smallest degree of a cyclic isogeny between the ii-th and jj-th curve in the isogeny class, in the Cremona numbering.

(1221)\left(\begin{array}{rr} 1 & 2 \\ 2 & 1 \end{array}\right)

Isogeny graph

Copy content sage:E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with Cremona labels.