sage:E = EllipticCurve("bl1")
E.isogeny_class()
Elliptic curves in class 137904bl
sage:E.isogeny_class().curves
LMFDB label |
Cremona label |
Weierstrass coefficients |
j-invariant |
Discriminant |
Torsion structure |
Modular degree |
Faltings height |
Optimality |
137904.s2 |
137904bl1 |
[0,−1,0,−49573,−4020992] |
174456832000/9771957 |
754677919923408 |
[2] |
645120 |
1.6097
|
Γ0(N)-optimal |
137904.s1 |
137904bl2 |
[0,−1,0,−782188,−266004116] |
42830942866000/146523 |
181053064987392 |
[2] |
1290240 |
1.9563
|
|
sage:E.rank()
The elliptic curves in class 137904bl have
rank 1.
|
Bad L-factors: |
Prime |
L-Factor |
2 | 1 |
3 | 1+T |
13 | 1 |
17 | 1−T |
|
|
Good L-factors: |
Prime |
L-Factor |
Isogeny Class over Fp |
5 |
1−3T+5T2 |
1.5.ad
|
7 |
1+4T+7T2 |
1.7.e
|
11 |
1−T+11T2 |
1.11.ab
|
19 |
1+7T+19T2 |
1.19.h
|
23 |
1+T+23T2 |
1.23.b
|
29 |
1−2T+29T2 |
1.29.ac
|
⋯ | ⋯ | ⋯ |
|
|
See L-function page for more information |
The elliptic curves in class 137904bl do not have complex multiplication.
sage:E.q_eigenform(10)
sage:E.isogeny_class().matrix()
The i,j entry is the smallest degree of a cyclic isogeny between the i-th and j-th curve in the isogeny class, in the Cremona numbering.
(1221)
sage:E.isogeny_graph().plot(edge_labels=True)
The vertices are labelled with Cremona labels.