Properties

Label 137904bu
Number of curves 66
Conductor 137904137904
CM no
Rank 11
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
E = EllipticCurve("bu1")
 
E.isogeny_class()
 

Elliptic curves in class 137904bu

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
137904.bh5 137904bu1 [0,1,0,91992,9929232][0, -1, 0, -91992, -9929232] 4354703137/3525124354703137/352512 69693771538759686969377153875968 [2][2] 884736884736 1.78301.7830 Γ0(N)\Gamma_0(N)-optimal
137904.bh4 137904bu2 [0,1,0,308312,54447600][0, -1, 0, -308312, 54447600] 163936758817/30338064163936758817/30338064 599802021305450496599802021305450496 [2,2][2, 2] 17694721769472 2.12962.1296  
137904.bh2 137904bu3 [0,1,0,4688792,3909270000][0, -1, 0, -4688792, 3909270000] 576615941610337/27060804576615941610337/27060804 535008593078009856535008593078009856 [2,2][2, 2] 35389443538944 2.47612.4761  
137904.bh6 137904bu4 [0,1,0,611048,316281328][0, -1, 0, 611048, 316281328] 1276229915423/29271770281276229915423/2927177028 57872074438015598592-57872074438015598592 [2][2] 35389443538944 2.47612.4761  
137904.bh1 137904bu5 [0,1,0,75019832,250124174832][0, -1, 0, -75019832, 250124174832] 2361739090258884097/52022361739090258884097/5202 102846711472128102846711472128 [2][2] 70778887077888 2.82272.8227  
137904.bh3 137904bu6 [0,1,0,4445432,4332911088][0, -1, 0, -4445432, 4332911088] 491411892194497/125563633938-491411892194497/125563633938 2482469594581581176832-2482469594581581176832 [2][2] 70778887077888 2.82272.8227  

Rank

sage: E.rank()
 

The elliptic curves in class 137904bu have rank 11.

Complex multiplication

The elliptic curves in class 137904bu do not have complex multiplication.

Modular form 137904.2.a.bu

sage: E.q_eigenform(10)
 
qq3+2q5+q94q112q15+q17+4q19+O(q20)q - q^{3} + 2 q^{5} + q^{9} - 4 q^{11} - 2 q^{15} + q^{17} + 4 q^{19} + O(q^{20}) Copy content Toggle raw display

Isogeny matrix

sage: E.isogeny_class().matrix()
 

The i,ji,j entry is the smallest degree of a cyclic isogeny between the ii-th and jj-th curve in the isogeny class, in the Cremona numbering.

(124488212244421422424188842814842841)\left(\begin{array}{rrrrrr} 1 & 2 & 4 & 4 & 8 & 8 \\ 2 & 1 & 2 & 2 & 4 & 4 \\ 4 & 2 & 1 & 4 & 2 & 2 \\ 4 & 2 & 4 & 1 & 8 & 8 \\ 8 & 4 & 2 & 8 & 1 & 4 \\ 8 & 4 & 2 & 8 & 4 & 1 \end{array}\right)

Isogeny graph

sage: E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with Cremona labels.