Properties

Label 137904cw1
Conductor 137904137904
Discriminant 7.071×1014-7.071\times 10^{14}
j-invariant 6984253215846496702579 -\frac{69842532158464}{96702579}
CM no
Rank 11
Torsion structure trivial

Related objects

Downloads

Learn more

Show commands: Magma / Oscar / PariGP / SageMath

Minimal Weierstrass equation

Minimal Weierstrass equation

Simplified equation

y2=x3x2166521x+26241669y^2=x^3-x^2-166521x+26241669 Copy content Toggle raw display (homogenize, simplify)
y2z=x3x2z166521xz2+26241669z3y^2z=x^3-x^2z-166521xz^2+26241669z^3 Copy content Toggle raw display (dehomogenize, simplify)
y2=x313488228x+19089712044y^2=x^3-13488228x+19089712044 Copy content Toggle raw display (homogenize, minimize)

comment: Define the curve
 
sage: E = EllipticCurve([0, -1, 0, -166521, 26241669])
 
gp: E = ellinit([0, -1, 0, -166521, 26241669])
 
magma: E := EllipticCurve([0, -1, 0, -166521, 26241669]);
 
oscar: E = elliptic_curve([0, -1, 0, -166521, 26241669])
 
sage: E.short_weierstrass_model()
 
magma: WeierstrassModel(E);
 
oscar: short_weierstrass_model(E)
 

Mordell-Weil group structure

Z\Z

magma: MordellWeilGroup(E);
 

Mordell-Weil generators

PPh^(P)\hat{h}(P)Order
(188,1243)(188, 1243)5.08344688455940809961077800165.0834468845594080996107780016\infty

Integral points

(188,±1243)(188,\pm 1243) Copy content Toggle raw display

comment: Integral points
 
sage: E.integral_points()
 
magma: IntegralPoints(E);
 

Invariants

Conductor: NN  =  137904 137904  = 243132172^{4} \cdot 3 \cdot 13^{2} \cdot 17
comment: Conductor
 
sage: E.conductor().factor()
 
gp: ellglobalred(E)[1]
 
magma: Conductor(E);
 
oscar: conductor(E)
 
Discriminant: Δ\Delta  =  707052123857664-707052123857664 = 12839134173-1 \cdot 2^{8} \cdot 3^{9} \cdot 13^{4} \cdot 17^{3}
comment: Discriminant
 
sage: E.discriminant().factor()
 
gp: E.disc
 
magma: Discriminant(E);
 
oscar: discriminant(E)
 
j-invariant: jj  =  6984253215846496702579 -\frac{69842532158464}{96702579}  = 1210391321737393-1 \cdot 2^{10} \cdot 3^{-9} \cdot 13^{2} \cdot 17^{-3} \cdot 739^{3}
comment: j-invariant
 
sage: E.j_invariant().factor()
 
gp: E.j
 
magma: jInvariant(E);
 
oscar: j_invariant(E)
 
Endomorphism ring: End(E)\mathrm{End}(E) = Z\Z
Geometric endomorphism ring: End(EQ)\mathrm{End}(E_{\overline{\Q}})  =  Z\Z    (no potential complex multiplication)
sage: E.has_cm()
 
magma: HasComplexMultiplication(E);
 
Sato-Tate group: ST(E)\mathrm{ST}(E) = SU(2)\mathrm{SU}(2)
Faltings height: hFaltingsh_{\mathrm{Faltings}} ≈ 1.75364770533584861383996365781.7536477053358486138399636578
gp: ellheight(E)
 
magma: FaltingsHeight(E);
 
oscar: faltings_height(E)
 
Stable Faltings height: hstableh_{\mathrm{stable}} ≈ 0.436566465808706162210646429640.43656646580870616221064642964
magma: StableFaltingsHeight(E);
 
oscar: stable_faltings_height(E)
 
abcabc quality: QQ ≈ 1.00235631639331561.0023563163933156
Szpiro ratio: σm\sigma_{m} ≈ 4.0293533365963554.029353336596355

BSD invariants

Analytic rank: ranr_{\mathrm{an}} = 1 1
sage: E.analytic_rank()
 
gp: ellanalyticrank(E)
 
magma: AnalyticRank(E);
 
Mordell-Weil rank: rr = 1 1
comment: Rank
 
sage: E.rank()
 
gp: [lower,upper] = ellrank(E)
 
magma: Rank(E);
 
Regulator: Reg(E/Q)\mathrm{Reg}(E/\Q) ≈ 5.08344688455940809961077800165.0834468845594080996107780016
comment: Regulator
 
sage: E.regulator()
 
G = E.gen \\ if available
 
matdet(ellheightmatrix(E,G))
 
magma: Regulator(E);
 
Real period: Ω\Omega ≈ 0.507416880055192099080760584260.50741688005519209908076058426
comment: Real Period
 
sage: E.period_lattice().omega()
 
gp: if(E.disc>0,2,1)*E.omega[1]
 
magma: (Discriminant(E) gt 0 select 2 else 1) * RealPeriod(E);
 
Tamagawa product: pcp\prod_{p}c_p = 1 1
comment: Tamagawa numbers
 
sage: E.tamagawa_numbers()
 
gp: gr=ellglobalred(E); [[gr[4][i,1],gr[5][i][4]] | i<-[1..#gr[4][,1]]]
 
magma: TamagawaNumbers(E);
 
oscar: tamagawa_numbers(E)
 
Torsion order: #E(Q)tor\#E(\Q)_{\mathrm{tor}} = 11
comment: Torsion order
 
sage: E.torsion_order()
 
gp: elltors(E)[1]
 
magma: Order(TorsionSubgroup(E));
 
oscar: prod(torsion_structure(E)[1])
 
Special value: L(E,1) L'(E,1) ≈ 2.57942675808942113667561675172.5794267580894211366756167517
comment: Special L-value
 
r = E.rank();
 
E.lseries().dokchitser().derivative(1,r)/r.factorial()
 
gp: [r,L1r] = ellanalyticrank(E); L1r/r!
 
magma: Lr1 where r,Lr1 := AnalyticRank(E: Precision:=12);
 
Analytic order of Ш: Шan{}_{\mathrm{an}}  ≈  11    (rounded)
comment: Order of Sha
 
sage: E.sha().an_numerical()
 
magma: MordellWeilShaInformation(E);
 

BSD formula

2.579426758L(E,1)=#Ш(E/Q)ΩEReg(E/Q)pcp#E(Q)tor210.5074175.0834471122.579426758\displaystyle 2.579426758 \approx L'(E,1) = \frac{\# Ш(E/\Q)\cdot \Omega_E \cdot \mathrm{Reg}(E/\Q) \cdot \prod_p c_p}{\#E(\Q)_{\rm tor}^2} \approx \frac{1 \cdot 0.507417 \cdot 5.083447 \cdot 1}{1^2} \approx 2.579426758

# self-contained SageMath code snippet for the BSD formula (checks rank, computes analytic sha)
 
E = EllipticCurve(%s); r = E.rank(); ar = E.analytic_rank(); assert r == ar;
 
Lr1 = E.lseries().dokchitser().derivative(1,r)/r.factorial(); sha = E.sha().an_numerical();
 
omega = E.period_lattice().omega(); reg = E.regulator(); tam = E.tamagawa_product(); tor = E.torsion_order();
 
assert r == ar; print("analytic sha: " + str(RR(Lr1) * tor^2 / (omega * reg * tam)))
 
/* self-contained Magma code snippet for the BSD formula (checks rank, computes analytic sha) */
 
E := EllipticCurve(%s); r := Rank(E); ar,Lr1 := AnalyticRank(E: Precision := 12); assert r eq ar;
 
sha := MordellWeilShaInformation(E); omega := RealPeriod(E) * (Discriminant(E) gt 0 select 2 else 1);
 
reg := Regulator(E); tam := &*TamagawaNumbers(E); tor := #TorsionSubgroup(E);
 
assert r eq ar; print "analytic sha:", Lr1 * tor^2 / (omega * reg * tam);
 

Modular invariants

Modular form 137904.2.a.j

qq3q52q7+q94q11+q15q17q19+O(q20) q - q^{3} - q^{5} - 2 q^{7} + q^{9} - 4 q^{11} + q^{15} - q^{17} - q^{19} + O(q^{20}) Copy content Toggle raw display

comment: q-expansion of modular form
 
sage: E.q_eigenform(20)
 
\\ actual modular form, use for small N
 
[mf,F] = mffromell(E)
 
Ser(mfcoefs(mf,20),q)
 
\\ or just the series
 
Ser(ellan(E,20),q)*q
 
magma: ModularForm(E);
 

For more coefficients, see the Downloads section to the right.

Modular degree: 684288
comment: Modular degree
 
sage: E.modular_degree()
 
gp: ellmoddegree(E)
 
magma: ModularDegree(E);
 
Γ0(N) \Gamma_0(N) -optimal: yes
Manin constant: 1
comment: Manin constant
 
magma: ManinConstant(E);
 

Local data at primes of bad reduction

This elliptic curve is not semistable. There are 4 primes pp of bad reduction:

pp Tamagawa number Kodaira symbol Reduction type Root number ordp(N)\mathrm{ord}_p(N) ordp(Δ)\mathrm{ord}_p(\Delta) ordp(den(j))\mathrm{ord}_p(\mathrm{den}(j))
22 11 I0I_0^{*} additive 1 4 8 0
33 11 I9I_{9} nonsplit multiplicative 1 1 9 9
1313 11 IVIV additive 1 2 4 0
1717 11 I3I_{3} nonsplit multiplicative 1 1 3 3

comment: Local data
 
sage: E.local_data()
 
gp: ellglobalred(E)[5]
 
magma: [LocalInformation(E,p) : p in BadPrimes(E)];
 
oscar: [(p,tamagawa_number(E,p), kodaira_symbol(E,p), reduction_type(E,p)) for p in bad_primes(E)]
 

Galois representations

The \ell-adic Galois representation has maximal image for all primes \ell.

comment: mod p Galois image
 
sage: rho = E.galois_representation(); [rho.image_type(p) for p in rho.non_surjective()]
 
magma: [GaloisRepresentation(E,p): p in PrimesUpTo(20)];
 

gens = [[1, 2, 0, 1], [1, 1, 101, 0], [1, 0, 2, 1], [35, 2, 35, 3], [37, 2, 37, 3], [101, 2, 100, 3]]
 
GL(2,Integers(102)).subgroup(gens)
 
Gens := [[1, 2, 0, 1], [1, 1, 101, 0], [1, 0, 2, 1], [35, 2, 35, 3], [37, 2, 37, 3], [101, 2, 100, 3]];
 
sub<GL(2,Integers(102))|Gens>;
 

The image H:=ρE(Gal(Q/Q))H:=\rho_E(\Gal(\overline{\Q}/\Q)) of the adelic Galois representation has level 102=2317 102 = 2 \cdot 3 \cdot 17 , index 22, genus 00, and generators

(1201),(111010),(1021),(352353),(372373),(10121003)\left(\begin{array}{rr} 1 & 2 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 1 & 1 \\ 101 & 0 \end{array}\right),\left(\begin{array}{rr} 1 & 0 \\ 2 & 1 \end{array}\right),\left(\begin{array}{rr} 35 & 2 \\ 35 & 3 \end{array}\right),\left(\begin{array}{rr} 37 & 2 \\ 37 & 3 \end{array}\right),\left(\begin{array}{rr} 101 & 2 \\ 100 & 3 \end{array}\right).

Input positive integer mm to see the generators of the reduction of HH to GL2(Z/mZ)\mathrm{GL}_2(\Z/m\Z):

The torsion field K:=Q(E[102])K:=\Q(E[102]) is a degree-1128038411280384 Galois extension of Q\Q with Gal(K/Q)\Gal(K/\Q) isomorphic to the projection of HH to GL2(Z/102Z)\GL_2(\Z/102\Z).

The table below list all primes \ell for which the Serre invariants associated to the mod-\ell Galois representation are exceptional.

\ell Reduction type Serre weight Serre conductor
22 additive 22 8619=313217 8619 = 3 \cdot 13^{2} \cdot 17
33 nonsplit multiplicative 44 2704=24132 2704 = 2^{4} \cdot 13^{2}
1313 additive 6262 816=24317 816 = 2^{4} \cdot 3 \cdot 17
1717 nonsplit multiplicative 1818 8112=243132 8112 = 2^{4} \cdot 3 \cdot 13^{2}

Isogenies

gp: ellisomat(E)
 

This curve has no rational isogenies. Its isogeny class 137904cw consists of this curve only.

Twists

The minimal quadratic twist of this elliptic curve is 68952z1, its twist by 4-4.

Growth of torsion in number fields

The number fields KK of degree less than 24 such that E(K)torsE(K)_{\rm tors} is strictly larger than E(Q)torsE(\Q)_{\rm tors} (which is trivial) are as follows:

[K:Q][K:\Q] KK E(K)torsE(K)_{\rm tors} Base change curve
33 3.1.34476.2 Z/2Z\Z/2\Z not in database
66 6.0.60618323376.1 Z/2ZZ/2Z\Z/2\Z \oplus \Z/2\Z not in database
88 8.2.255848067072.14 Z/3Z\Z/3\Z not in database
1212 deg 12 Z/4Z\Z/4\Z not in database

We only show fields where the torsion growth is primitive. For fields not in the database, click on the degree shown to reveal the defining polynomial.

Iwasawa invariants

pp 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47
Reduction type add nonsplit ord ord ord add nonsplit ord ord ord ord ord ord ord ord
λ\lambda-invariant(s) - 1 1 1 1 - 3 1 1 1 1 1 1 1 3
μ\mu-invariant(s) - 0 0 0 0 - 0 0 0 0 0 0 0 0 0

An entry - indicates that the invariants are not computed because the reduction is additive.

pp-adic regulators

pp-adic regulators are not yet computed for curves that are not Γ0\Gamma_0-optimal.