E = EllipticCurve("k1")
E.isogeny_class()
Elliptic curves in class 1386.k
sage: E.isogeny_class().curves
LMFDB label |
Cremona label |
Weierstrass coefficients |
j-invariant |
Discriminant |
Torsion structure |
Modular degree |
Faltings height |
Optimality |
1386.k1 |
1386l4 |
[1,−1,1,−2039,35925] |
1285429208617/614922 |
448278138 |
[2] |
1024 |
0.61497
|
|
1386.k2 |
1386l3 |
[1,−1,1,−1139,−14259] |
223980311017/4278582 |
3119086278 |
[2] |
1024 |
0.61497
|
|
1386.k3 |
1386l2 |
[1,−1,1,−149,393] |
498677257/213444 |
155600676 |
[2,2] |
512 |
0.26839
|
|
1386.k4 |
1386l1 |
[1,−1,1,31,33] |
4657463/3696 |
−2694384 |
[2] |
256 |
−0.078180
|
Γ0(N)-optimal |
The elliptic curves in class 1386.k have
rank 0.
The elliptic curves in class 1386.k do not have complex multiplication.
sage: E.isogeny_class().matrix()
The i,j entry is the smallest degree of a cyclic isogeny between the i-th and j-th curve in the isogeny class, in the LMFDB numbering.
⎝⎜⎜⎛1424412422124421⎠⎟⎟⎞
sage: E.isogeny_graph().plot(edge_labels=True)
The vertices are labelled with LMFDB labels.