Properties

Label 1386.k
Number of curves 44
Conductor 13861386
CM no
Rank 00
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
E = EllipticCurve("k1")
 
E.isogeny_class()
 

Elliptic curves in class 1386.k

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
1386.k1 1386l4 [1,1,1,2039,35925][1, -1, 1, -2039, 35925] 1285429208617/6149221285429208617/614922 448278138448278138 [2][2] 10241024 0.614970.61497  
1386.k2 1386l3 [1,1,1,1139,14259][1, -1, 1, -1139, -14259] 223980311017/4278582223980311017/4278582 31190862783119086278 [2][2] 10241024 0.614970.61497  
1386.k3 1386l2 [1,1,1,149,393][1, -1, 1, -149, 393] 498677257/213444498677257/213444 155600676155600676 [2,2][2, 2] 512512 0.268390.26839  
1386.k4 1386l1 [1,1,1,31,33][1, -1, 1, 31, 33] 4657463/36964657463/3696 2694384-2694384 [2][2] 256256 0.078180-0.078180 Γ0(N)\Gamma_0(N)-optimal

Rank

sage: E.rank()
 

The elliptic curves in class 1386.k have rank 00.

Complex multiplication

The elliptic curves in class 1386.k do not have complex multiplication.

Modular form 1386.2.a.k

sage: E.q_eigenform(10)
 
q+q2+q4+2q5+q7+q8+2q10q11+2q13+q14+q16+6q174q19+O(q20)q + q^{2} + q^{4} + 2 q^{5} + q^{7} + q^{8} + 2 q^{10} - q^{11} + 2 q^{13} + q^{14} + q^{16} + 6 q^{17} - 4 q^{19} + O(q^{20}) Copy content Toggle raw display

Isogeny matrix

sage: E.isogeny_class().matrix()
 

The i,ji,j entry is the smallest degree of a cyclic isogeny between the ii-th and jj-th curve in the isogeny class, in the LMFDB numbering.

(1424412422124421)\left(\begin{array}{rrrr} 1 & 4 & 2 & 4 \\ 4 & 1 & 2 & 4 \\ 2 & 2 & 1 & 2 \\ 4 & 4 & 2 & 1 \end{array}\right)

Isogeny graph

sage: E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.