Properties

Label 139200.bf
Number of curves $2$
Conductor $139200$
CM no
Rank $1$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
E = EllipticCurve("bf1")
 
E.isogeny_class()
 

Elliptic curves in class 139200.bf

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
139200.bf1 139200cr2 \([0, -1, 0, -15553, -741023]\) \(12698260037/7569\) \(248020992000\) \([2]\) \(196608\) \(1.1306\)  
139200.bf2 139200cr1 \([0, -1, 0, -1153, -6623]\) \(5177717/2349\) \(76972032000\) \([2]\) \(98304\) \(0.78400\) \(\Gamma_0(N)\)-optimal

Rank

sage: E.rank()
 

The elliptic curves in class 139200.bf have rank \(1\).

Complex multiplication

The elliptic curves in class 139200.bf do not have complex multiplication.

Modular form 139200.2.a.bf

sage: E.q_eigenform(10)
 
\(q - q^{3} - 2 q^{7} + q^{9} + 4 q^{13} - 2 q^{17} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

sage: E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rr} 1 & 2 \\ 2 & 1 \end{array}\right)\)

Isogeny graph

sage: E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.