Properties

Label 141120.c
Number of curves $2$
Conductor $141120$
CM no
Rank $0$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
E = EllipticCurve("c1")
 
E.isogeny_class()
 

Elliptic curves in class 141120.c

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
141120.c1 141120oy2 \([0, 0, 0, -94668, 11025392]\) \(1314036/25\) \(1785114442137600\) \([2]\) \(917504\) \(1.7199\)  
141120.c2 141120oy1 \([0, 0, 0, -12348, -268912]\) \(11664/5\) \(89255722106880\) \([2]\) \(458752\) \(1.3733\) \(\Gamma_0(N)\)-optimal

Rank

sage: E.rank()
 

The elliptic curves in class 141120.c have rank \(0\).

Complex multiplication

The elliptic curves in class 141120.c do not have complex multiplication.

Modular form 141120.2.a.c

sage: E.q_eigenform(10)
 
\(q - q^{5} - 6 q^{11} - 2 q^{13} - 2 q^{17} + 6 q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

sage: E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rr} 1 & 2 \\ 2 & 1 \end{array}\right)\)

Isogeny graph

sage: E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.