Properties

Label 141120da
Number of curves $6$
Conductor $141120$
CM no
Rank $0$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
E = EllipticCurve("da1")
 
E.isogeny_class()
 

Elliptic curves in class 141120da

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
141120.v4 141120da1 \([0, 0, 0, -1297128, -568619912]\) \(2748251600896/2205\) \(193653039928320\) \([2]\) \(1572864\) \(2.0469\) \(\Gamma_0(N)\)-optimal
141120.v3 141120da2 \([0, 0, 0, -1305948, -560494928]\) \(175293437776/4862025\) \(6832079248671129600\) \([2, 2]\) \(3145728\) \(2.3934\)  
141120.v2 141120da3 \([0, 0, 0, -3034668, 1235299408]\) \(549871953124/200930625\) \(1129384528861962240000\) \([2, 2]\) \(6291456\) \(2.7400\)  
141120.v5 141120da4 \([0, 0, 0, 281652, -1836290288]\) \(439608956/259416045\) \(-1458117535649722859520\) \([2]\) \(6291456\) \(2.7400\)  
141120.v1 141120da5 \([0, 0, 0, -43042188, 108663492112]\) \(784478485879202/221484375\) \(2489824799078400000000\) \([2]\) \(12582912\) \(3.0866\)  
141120.v6 141120da6 \([0, 0, 0, 9313332, 8737944208]\) \(7947184069438/7533176175\) \(-84684478787009534361600\) \([2]\) \(12582912\) \(3.0866\)  

Rank

sage: E.rank()
 

The elliptic curves in class 141120da have rank \(0\).

Complex multiplication

The elliptic curves in class 141120da do not have complex multiplication.

Modular form 141120.2.a.da

sage: E.q_eigenform(10)
 
\(q - q^{5} - 4 q^{11} - 2 q^{13} - 6 q^{17} - 4 q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

sage: E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the Cremona numbering.

\(\left(\begin{array}{rrrrrr} 1 & 2 & 4 & 4 & 8 & 8 \\ 2 & 1 & 2 & 2 & 4 & 4 \\ 4 & 2 & 1 & 4 & 2 & 2 \\ 4 & 2 & 4 & 1 & 8 & 8 \\ 8 & 4 & 2 & 8 & 1 & 4 \\ 8 & 4 & 2 & 8 & 4 & 1 \end{array}\right)\)

Isogeny graph

sage: E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with Cremona labels.