Show commands:
SageMath
E = EllipticCurve("da1")
E.isogeny_class()
Elliptic curves in class 141120da
sage: E.isogeny_class().curves
LMFDB label | Cremona label | Weierstrass coefficients | j-invariant | Discriminant | Torsion structure | Modular degree | Faltings height | Optimality |
---|---|---|---|---|---|---|---|---|
141120.v4 | 141120da1 | \([0, 0, 0, -1297128, -568619912]\) | \(2748251600896/2205\) | \(193653039928320\) | \([2]\) | \(1572864\) | \(2.0469\) | \(\Gamma_0(N)\)-optimal |
141120.v3 | 141120da2 | \([0, 0, 0, -1305948, -560494928]\) | \(175293437776/4862025\) | \(6832079248671129600\) | \([2, 2]\) | \(3145728\) | \(2.3934\) | |
141120.v2 | 141120da3 | \([0, 0, 0, -3034668, 1235299408]\) | \(549871953124/200930625\) | \(1129384528861962240000\) | \([2, 2]\) | \(6291456\) | \(2.7400\) | |
141120.v5 | 141120da4 | \([0, 0, 0, 281652, -1836290288]\) | \(439608956/259416045\) | \(-1458117535649722859520\) | \([2]\) | \(6291456\) | \(2.7400\) | |
141120.v1 | 141120da5 | \([0, 0, 0, -43042188, 108663492112]\) | \(784478485879202/221484375\) | \(2489824799078400000000\) | \([2]\) | \(12582912\) | \(3.0866\) | |
141120.v6 | 141120da6 | \([0, 0, 0, 9313332, 8737944208]\) | \(7947184069438/7533176175\) | \(-84684478787009534361600\) | \([2]\) | \(12582912\) | \(3.0866\) |
Rank
sage: E.rank()
The elliptic curves in class 141120da have rank \(0\).
Complex multiplication
The elliptic curves in class 141120da do not have complex multiplication.Modular form 141120.2.a.da
sage: E.q_eigenform(10)
Isogeny matrix
sage: E.isogeny_class().matrix()
The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the Cremona numbering.
\(\left(\begin{array}{rrrrrr} 1 & 2 & 4 & 4 & 8 & 8 \\ 2 & 1 & 2 & 2 & 4 & 4 \\ 4 & 2 & 1 & 4 & 2 & 2 \\ 4 & 2 & 4 & 1 & 8 & 8 \\ 8 & 4 & 2 & 8 & 1 & 4 \\ 8 & 4 & 2 & 8 & 4 & 1 \end{array}\right)\)
Isogeny graph
sage: E.isogeny_graph().plot(edge_labels=True)
The vertices are labelled with Cremona labels.