Properties

Label 141120ek2
Conductor 141120141120
Discriminant 3.216×10253.216\times 10^{25}
j-invariant 44848771388827297416006491549016015625 \frac{448487713888272974160064}{91549016015625}
CM no
Rank 00
Torsion structure Z/2ZZ/2Z\Z/{2}\Z \oplus \Z/{2}\Z

Related objects

Downloads

Learn more

Show commands: Magma / Oscar / PariGP / SageMath

Minimal Weierstrass equation

Minimal Weierstrass equation

Simplified equation

y2=x311252115588x459408804615488y^2=x^3-11252115588x-459408804615488 Copy content Toggle raw display (homogenize, simplify)
y2z=x311252115588xz2459408804615488z3y^2z=x^3-11252115588xz^2-459408804615488z^3 Copy content Toggle raw display (dehomogenize, simplify)
y2=x311252115588x459408804615488y^2=x^3-11252115588x-459408804615488 Copy content Toggle raw display (homogenize, minimize)

comment: Define the curve
 
sage: E = EllipticCurve([0, 0, 0, -11252115588, -459408804615488])
 
gp: E = ellinit([0, 0, 0, -11252115588, -459408804615488])
 
magma: E := EllipticCurve([0, 0, 0, -11252115588, -459408804615488]);
 
oscar: E = elliptic_curve([0, 0, 0, -11252115588, -459408804615488])
 
sage: E.short_weierstrass_model()
 
magma: WeierstrassModel(E);
 
oscar: short_weierstrass_model(E)
 

Mordell-Weil group structure

Z/2ZZ/2Z\Z/{2}\Z \oplus \Z/{2}\Z

magma: MordellWeilGroup(E);
 

Mordell-Weil generators

PPh^(P)\hat{h}(P)Order
(61222,0)(-61222, 0)0022
(122486,0)(122486, 0)0022

Integral points

(61264,0) \left(-61264, 0\right) , (61222,0) \left(-61222, 0\right) , (122486,0) \left(122486, 0\right) Copy content Toggle raw display

comment: Integral points
 
sage: E.integral_points()
 
magma: IntegralPoints(E);
 

Invariants

Conductor: NN  =  141120 141120  = 26325722^{6} \cdot 3^{2} \cdot 5 \cdot 7^{2}
comment: Conductor
 
sage: E.conductor().factor()
 
gp: ellglobalred(E)[1]
 
magma: Conductor(E);
 
oscar: conductor(E)
 
Discriminant: Δ\Delta  =  3216098912267072160000000032160989122670721600000000 = 21232058782^{12} \cdot 3^{20} \cdot 5^{8} \cdot 7^{8}
comment: Discriminant
 
sage: E.discriminant().factor()
 
gp: E.disc
 
magma: Discriminant(E);
 
oscar: discriminant(E)
 
j-invariant: jj  =  44848771388827297416006491549016015625 \frac{448487713888272974160064}{91549016015625}  = 2631458721913625132^{6} \cdot 3^{-14} \cdot 5^{-8} \cdot 7^{-2} \cdot 19136251^{3}
comment: j-invariant
 
sage: E.j_invariant().factor()
 
gp: E.j
 
magma: jInvariant(E);
 
oscar: j_invariant(E)
 
Endomorphism ring: End(E)\mathrm{End}(E) = Z\Z
Geometric endomorphism ring: End(EQ)\mathrm{End}(E_{\overline{\Q}})  =  Z\Z    (no potential complex multiplication)
sage: E.has_cm()
 
magma: HasComplexMultiplication(E);
 
Sato-Tate group: ST(E)\mathrm{ST}(E) = SU(2)\mathrm{SU}(2)
Faltings height: hFaltingsh_{\mathrm{Faltings}} ≈ 4.28224877674960051542316875784.2822487767496005154231687578
gp: ellheight(E)
 
magma: FaltingsHeight(E);
 
oscar: faltings_height(E)
 
Stable Faltings height: hstableh_{\mathrm{stable}} ≈ 2.06684037732794370775563764622.0668403773279437077556376462
magma: StableFaltingsHeight(E);
 
oscar: stable_faltings_height(E)
 
abcabc quality: QQ ≈ 1.09640092096988971.0964009209698897
Szpiro ratio: σm\sigma_{m} ≈ 6.8349977485172896.834997748517289

BSD invariants

Analytic rank: ranr_{\mathrm{an}} = 0 0
sage: E.analytic_rank()
 
gp: ellanalyticrank(E)
 
magma: AnalyticRank(E);
 
Mordell-Weil rank: rr = 0 0
comment: Rank
 
sage: E.rank()
 
gp: [lower,upper] = ellrank(E)
 
magma: Rank(E);
 
Regulator: Reg(E/Q)\mathrm{Reg}(E/\Q) = 11
comment: Regulator
 
sage: E.regulator()
 
G = E.gen \\ if available
 
matdet(ellheightmatrix(E,G))
 
magma: Regulator(E);
 
Real period: Ω\Omega ≈ 0.0146585500359759846411645997870.014658550035975984641164599787
comment: Real Period
 
sage: E.period_lattice().omega()
 
gp: if(E.disc>0,2,1)*E.omega[1]
 
magma: (Discriminant(E) gt 0 select 2 else 1) * RealPeriod(E);
 
Tamagawa product: pcp\prod_{p}c_p = 128 128  = 2222222 2^{2}\cdot2^{2}\cdot2\cdot2^{2}
comment: Tamagawa numbers
 
sage: E.tamagawa_numbers()
 
gp: gr=ellglobalred(E); [[gr[4][i,1],gr[5][i][4]] | i<-[1..#gr[4][,1]]]
 
magma: TamagawaNumbers(E);
 
oscar: tamagawa_numbers(E)
 
Torsion order: #E(Q)tor\#E(\Q)_{\mathrm{tor}} = 44
comment: Torsion order
 
sage: E.torsion_order()
 
gp: elltors(E)[1]
 
magma: Order(TorsionSubgroup(E));
 
oscar: prod(torsion_structure(E)[1])
 
Special value: L(E,1) L(E,1) ≈ 2.93171000719519692823291995732.9317100071951969282329199573
comment: Special L-value
 
r = E.rank();
 
E.lseries().dokchitser().derivative(1,r)/r.factorial()
 
gp: [r,L1r] = ellanalyticrank(E); L1r/r!
 
magma: Lr1 where r,Lr1 := AnalyticRank(E: Precision:=12);
 
Analytic order of Ш: Шan{}_{\mathrm{an}}  =  2525 = 525^2    (exact)
comment: Order of Sha
 
sage: E.sha().an_numerical()
 
magma: MordellWeilShaInformation(E);
 

BSD formula

2.931710007L(E,1)=#Ш(E/Q)ΩEReg(E/Q)pcp#E(Q)tor2250.0146591.000000128422.931710007\displaystyle 2.931710007 \approx L(E,1) = \frac{\# Ш(E/\Q)\cdot \Omega_E \cdot \mathrm{Reg}(E/\Q) \cdot \prod_p c_p}{\#E(\Q)_{\rm tor}^2} \approx \frac{25 \cdot 0.014659 \cdot 1.000000 \cdot 128}{4^2} \approx 2.931710007

# self-contained SageMath code snippet for the BSD formula (checks rank, computes analytic sha)
 
E = EllipticCurve(%s); r = E.rank(); ar = E.analytic_rank(); assert r == ar;
 
Lr1 = E.lseries().dokchitser().derivative(1,r)/r.factorial(); sha = E.sha().an_numerical();
 
omega = E.period_lattice().omega(); reg = E.regulator(); tam = E.tamagawa_product(); tor = E.torsion_order();
 
assert r == ar; print("analytic sha: " + str(RR(Lr1) * tor^2 / (omega * reg * tam)))
 
/* self-contained Magma code snippet for the BSD formula (checks rank, computes analytic sha) */
 
E := EllipticCurve(%s); r := Rank(E); ar,Lr1 := AnalyticRank(E: Precision := 12); assert r eq ar;
 
sha := MordellWeilShaInformation(E); omega := RealPeriod(E) * (Discriminant(E) gt 0 select 2 else 1);
 
reg := Regulator(E); tam := &*TamagawaNumbers(E); tor := #TorsionSubgroup(E);
 
assert r eq ar; print "analytic sha:", Lr1 * tor^2 / (omega * reg * tam);
 

Modular invariants

Modular form 141120.2.a.gn

qq5+4q116q13+6q17+4q19+O(q20) q - q^{5} + 4 q^{11} - 6 q^{13} + 6 q^{17} + 4 q^{19} + O(q^{20}) Copy content Toggle raw display

comment: q-expansion of modular form
 
sage: E.q_eigenform(20)
 
\\ actual modular form, use for small N
 
[mf,F] = mffromell(E)
 
Ser(mfcoefs(mf,20),q)
 
\\ or just the series
 
Ser(ellan(E,20),q)*q
 
magma: ModularForm(E);
 

For more coefficients, see the Downloads section to the right.

Modular degree: 165150720
comment: Modular degree
 
sage: E.modular_degree()
 
gp: ellmoddegree(E)
 
magma: ModularDegree(E);
 
Γ0(N) \Gamma_0(N) -optimal: no
Manin constant: 1
comment: Manin constant
 
magma: ManinConstant(E);
 

Local data at primes of bad reduction

This elliptic curve is not semistable. There are 4 primes pp of bad reduction:

pp Tamagawa number Kodaira symbol Reduction type Root number ordp(N)\mathrm{ord}_p(N) ordp(Δ)\mathrm{ord}_p(\Delta) ordp(den(j))\mathrm{ord}_p(\mathrm{den}(j))
22 44 I2I_{2}^{*} additive -1 6 12 0
33 44 I14I_{14}^{*} additive -1 2 20 14
55 22 I8I_{8} nonsplit multiplicative 1 1 8 8
77 44 I2I_{2}^{*} additive -1 2 8 2

comment: Local data
 
sage: E.local_data()
 
gp: ellglobalred(E)[5]
 
magma: [LocalInformation(E,p) : p in BadPrimes(E)];
 
oscar: [(p,tamagawa_number(E,p), kodaira_symbol(E,p), reduction_type(E,p)) for p in bad_primes(E)]
 

Galois representations

The \ell-adic Galois representation has maximal image for all primes \ell except those listed in the table below.

prime \ell mod-\ell image \ell-adic image
22 2Cs 4.12.0.2

comment: mod p Galois image
 
sage: rho = E.galois_representation(); [rho.image_type(p) for p in rho.non_surjective()]
 
magma: [GaloisRepresentation(E,p): p in PrimesUpTo(20)];
 

gens = [[165, 4, 164, 5], [45, 4, 8, 11], [165, 166, 58, 1], [81, 166, 2, 1], [1, 4, 0, 1], [95, 166, 0, 167], [1, 0, 4, 1]]
 
GL(2,Integers(168)).subgroup(gens)
 
Gens := [[165, 4, 164, 5], [45, 4, 8, 11], [165, 166, 58, 1], [81, 166, 2, 1], [1, 4, 0, 1], [95, 166, 0, 167], [1, 0, 4, 1]];
 
sub<GL(2,Integers(168))|Gens>;
 

The image H:=ρE(Gal(Q/Q))H:=\rho_E(\Gal(\overline{\Q}/\Q)) of the adelic Galois representation has level 168=2337 168 = 2^{3} \cdot 3 \cdot 7 , index 4848, genus 00, and generators

(16541645),(454811),(165166581),(8116621),(1401),(951660167),(1041)\left(\begin{array}{rr} 165 & 4 \\ 164 & 5 \end{array}\right),\left(\begin{array}{rr} 45 & 4 \\ 8 & 11 \end{array}\right),\left(\begin{array}{rr} 165 & 166 \\ 58 & 1 \end{array}\right),\left(\begin{array}{rr} 81 & 166 \\ 2 & 1 \end{array}\right),\left(\begin{array}{rr} 1 & 4 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 95 & 166 \\ 0 & 167 \end{array}\right),\left(\begin{array}{rr} 1 & 0 \\ 4 & 1 \end{array}\right).

Input positive integer mm to see the generators of the reduction of HH to GL2(Z/mZ)\mathrm{GL}_2(\Z/m\Z):

The torsion field K:=Q(E[168])K:=\Q(E[168]) is a degree-30965763096576 Galois extension of Q\Q with Gal(K/Q)\Gal(K/\Q) isomorphic to the projection of HH to GL2(Z/168Z)\GL_2(\Z/168\Z).

The table below list all primes \ell for which the Serre invariants associated to the mod-\ell Galois representation are exceptional.

\ell Reduction type Serre weight Serre conductor
22 additive 22 441=3272 441 = 3^{2} \cdot 7^{2}
33 additive 88 15680=26572 15680 = 2^{6} \cdot 5 \cdot 7^{2}
55 nonsplit multiplicative 66 28224=263272 28224 = 2^{6} \cdot 3^{2} \cdot 7^{2}
77 additive 3232 2880=26325 2880 = 2^{6} \cdot 3^{2} \cdot 5

Isogenies

gp: ellisomat(E)
 

This curve has non-trivial cyclic isogenies of degree dd for d=d= 2.
Its isogeny class 141120ek consists of 4 curves linked by isogenies of degrees dividing 4.

Twists

The minimal quadratic twist of this elliptic curve is 3360q1, its twist by 168-168.

Growth of torsion in number fields

The number fields KK of degree less than 24 such that E(K)torsE(K)_{\rm tors} is strictly larger than E(Q)torsE(\Q)_{\rm tors} Z/2ZZ/2Z\cong \Z/{2}\Z \oplus \Z/{2}\Z are as follows:

[K:Q][K:\Q] KK E(K)torsE(K)_{\rm tors} Base change curve
44 Q(6,7)\Q(\sqrt{-6}, \sqrt{-7}) Z/2ZZ/4Z\Z/2\Z \oplus \Z/4\Z not in database
44 Q(6,7)\Q(\sqrt{6}, \sqrt{7}) Z/2ZZ/4Z\Z/2\Z \oplus \Z/4\Z not in database
44 Q(6,7)\Q(\sqrt{-6}, \sqrt{7}) Z/2ZZ/4Z\Z/2\Z \oplus \Z/4\Z not in database
88 8.0.12745506816.7 Z/4ZZ/4Z\Z/4\Z \oplus \Z/4\Z not in database
88 deg 8 Z/2ZZ/6Z\Z/2\Z \oplus \Z/6\Z not in database
1616 deg 16 Z/2ZZ/8Z\Z/2\Z \oplus \Z/8\Z not in database
1616 deg 16 Z/2ZZ/8Z\Z/2\Z \oplus \Z/8\Z not in database
1616 deg 16 Z/2ZZ/8Z\Z/2\Z \oplus \Z/8\Z not in database

We only show fields where the torsion growth is primitive. For fields not in the database, click on the degree shown to reveal the defining polynomial.

Iwasawa invariants

pp 2 3 5 7
Reduction type add add nonsplit add
λ\lambda-invariant(s) - - 2 -
μ\mu-invariant(s) - - 0 -

All Iwasawa λ\lambda and μ\mu-invariants for primes p7p\ge 7 of good reduction are zero.

An entry - indicates that the invariants are not computed because the reduction is additive.

pp-adic regulators

All pp-adic regulators are identically 11 since the rank is 00.