sage:E = EllipticCurve("jb1")
E.isogeny_class()
Elliptic curves in class 141120jb
sage:E.isogeny_class().curves
LMFDB label |
Cremona label |
Weierstrass coefficients |
j-invariant |
Discriminant |
Torsion structure |
Modular degree |
Faltings height |
Optimality |
141120.ln4 |
141120jb1 |
[0,0,0,6468,−93296] |
21296/15 |
−21077881896960 |
[2] |
294912 |
1.2451
|
Γ0(N)-optimal |
141120.ln3 |
141120jb2 |
[0,0,0,−28812,−784784] |
470596/225 |
1264672913817600 |
[2,2] |
589824 |
1.5917
|
|
141120.ln2 |
141120jb3 |
[0,0,0,−240492,44853424] |
136835858/1875 |
21077881896960000 |
[2] |
1179648 |
1.9382
|
|
141120.ln1 |
141120jb4 |
[0,0,0,−381612,−90678224] |
546718898/405 |
4552822489743360 |
[2] |
1179648 |
1.9382
|
|
sage:E.rank()
The elliptic curves in class 141120jb have
rank 0.
|
Bad L-factors: |
Prime |
L-Factor |
2 | 1 |
3 | 1 |
5 | 1−T |
7 | 1 |
|
|
Good L-factors: |
Prime |
L-Factor |
Isogeny Class over Fp |
11 |
1+4T+11T2 |
1.11.e
|
13 |
1+13T2 |
1.13.a
|
17 |
1−2T+17T2 |
1.17.ac
|
19 |
1−2T+19T2 |
1.19.ac
|
23 |
1+6T+23T2 |
1.23.g
|
29 |
1−4T+29T2 |
1.29.ae
|
⋯ | ⋯ | ⋯ |
|
|
See L-function page for more information |
The elliptic curves in class 141120jb do not have complex multiplication.
sage:E.q_eigenform(10)
sage:E.isogeny_class().matrix()
The i,j entry is the smallest degree of a cyclic isogeny between the i-th and j-th curve in the isogeny class, in the Cremona numbering.
⎝⎜⎜⎛1244212242144241⎠⎟⎟⎞
sage:E.isogeny_graph().plot(edge_labels=True)
The vertices are labelled with Cremona labels.