Properties

Label 141120jb
Number of curves $4$
Conductor $141120$
CM no
Rank $0$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
E = EllipticCurve("jb1")
 
E.isogeny_class()
 

Elliptic curves in class 141120jb

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
141120.ln4 141120jb1 \([0, 0, 0, 6468, -93296]\) \(21296/15\) \(-21077881896960\) \([2]\) \(294912\) \(1.2451\) \(\Gamma_0(N)\)-optimal
141120.ln3 141120jb2 \([0, 0, 0, -28812, -784784]\) \(470596/225\) \(1264672913817600\) \([2, 2]\) \(589824\) \(1.5917\)  
141120.ln2 141120jb3 \([0, 0, 0, -240492, 44853424]\) \(136835858/1875\) \(21077881896960000\) \([2]\) \(1179648\) \(1.9382\)  
141120.ln1 141120jb4 \([0, 0, 0, -381612, -90678224]\) \(546718898/405\) \(4552822489743360\) \([2]\) \(1179648\) \(1.9382\)  

Rank

sage: E.rank()
 

The elliptic curves in class 141120jb have rank \(0\).

Complex multiplication

The elliptic curves in class 141120jb do not have complex multiplication.

Modular form 141120.2.a.jb

sage: E.q_eigenform(10)
 
\(q + q^{5} - 6 q^{13} - 2 q^{17} + 4 q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

sage: E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the Cremona numbering.

\(\left(\begin{array}{rrrr} 1 & 2 & 4 & 4 \\ 2 & 1 & 2 & 2 \\ 4 & 2 & 1 & 4 \\ 4 & 2 & 4 & 1 \end{array}\right)\)

Isogeny graph

sage: E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with Cremona labels.