Properties

Label 141120jy
Number of curves $4$
Conductor $141120$
CM no
Rank $0$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
E = EllipticCurve("jy1")
 
E.isogeny_class()
 

Elliptic curves in class 141120jy

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
141120.oq4 141120jy1 \([0, 0, 0, 65268, -10224144]\) \(1367631/2800\) \(-62952607265587200\) \([2]\) \(1179648\) \(1.9078\) \(\Gamma_0(N)\)-optimal
141120.oq3 141120jy2 \([0, 0, 0, -499212, -109798416]\) \(611960049/122500\) \(2754176567869440000\) \([2, 2]\) \(2359296\) \(2.2544\)  
141120.oq2 141120jy3 \([0, 0, 0, -2474892, 1400411376]\) \(74565301329/5468750\) \(122954311065600000000\) \([2]\) \(4718592\) \(2.6010\)  
141120.oq1 141120jy4 \([0, 0, 0, -7555212, -7992761616]\) \(2121328796049/120050\) \(2699093036512051200\) \([2]\) \(4718592\) \(2.6010\)  

Rank

sage: E.rank()
 

The elliptic curves in class 141120jy have rank \(0\).

Complex multiplication

The elliptic curves in class 141120jy do not have complex multiplication.

Modular form 141120.2.a.jy

sage: E.q_eigenform(10)
 
\(q + q^{5} + 4 q^{11} - 6 q^{13} + 2 q^{17} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

sage: E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the Cremona numbering.

\(\left(\begin{array}{rrrr} 1 & 2 & 4 & 4 \\ 2 & 1 & 2 & 2 \\ 4 & 2 & 1 & 4 \\ 4 & 2 & 4 & 1 \end{array}\right)\)

Isogeny graph

sage: E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with Cremona labels.