Show commands:
SageMath
E = EllipticCurve("lf1")
E.isogeny_class()
Elliptic curves in class 141120lf
sage: E.isogeny_class().curves
LMFDB label | Cremona label | Weierstrass coefficients | j-invariant | Discriminant | Torsion structure | Modular degree | Faltings height | Optimality |
---|---|---|---|---|---|---|---|---|
141120.w4 | 141120lf1 | \([0, 0, 0, -509943, 211341508]\) | \(-2671731885376/1969120125\) | \(-10808562873874248000\) | \([2]\) | \(2359296\) | \(2.3517\) | \(\Gamma_0(N)\)-optimal |
141120.w3 | 141120lf2 | \([0, 0, 0, -9261588, 10846340512]\) | \(250094631024064/62015625\) | \(21785966991936000000\) | \([2, 2]\) | \(4718592\) | \(2.6982\) | |
141120.w1 | 141120lf3 | \([0, 0, 0, -148176588, 694252574512]\) | \(128025588102048008/7875\) | \(22131775991808000\) | \([2]\) | \(9437184\) | \(3.0448\) | |
141120.w2 | 141120lf4 | \([0, 0, 0, -10372908, 8080042768]\) | \(43919722445768/15380859375\) | \(43226124984000000000000\) | \([2]\) | \(9437184\) | \(3.0448\) |
Rank
sage: E.rank()
The elliptic curves in class 141120lf have rank \(1\).
Complex multiplication
The elliptic curves in class 141120lf do not have complex multiplication.Modular form 141120.2.a.lf
sage: E.q_eigenform(10)
Isogeny matrix
sage: E.isogeny_class().matrix()
The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the Cremona numbering.
\(\left(\begin{array}{rrrr} 1 & 2 & 4 & 4 \\ 2 & 1 & 2 & 2 \\ 4 & 2 & 1 & 4 \\ 4 & 2 & 4 & 1 \end{array}\right)\)
Isogeny graph
sage: E.isogeny_graph().plot(edge_labels=True)
The vertices are labelled with Cremona labels.