Properties

Label 141120lf
Number of curves $4$
Conductor $141120$
CM no
Rank $1$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
E = EllipticCurve("lf1")
 
E.isogeny_class()
 

Elliptic curves in class 141120lf

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
141120.w4 141120lf1 \([0, 0, 0, -509943, 211341508]\) \(-2671731885376/1969120125\) \(-10808562873874248000\) \([2]\) \(2359296\) \(2.3517\) \(\Gamma_0(N)\)-optimal
141120.w3 141120lf2 \([0, 0, 0, -9261588, 10846340512]\) \(250094631024064/62015625\) \(21785966991936000000\) \([2, 2]\) \(4718592\) \(2.6982\)  
141120.w1 141120lf3 \([0, 0, 0, -148176588, 694252574512]\) \(128025588102048008/7875\) \(22131775991808000\) \([2]\) \(9437184\) \(3.0448\)  
141120.w2 141120lf4 \([0, 0, 0, -10372908, 8080042768]\) \(43919722445768/15380859375\) \(43226124984000000000000\) \([2]\) \(9437184\) \(3.0448\)  

Rank

sage: E.rank()
 

The elliptic curves in class 141120lf have rank \(1\).

Complex multiplication

The elliptic curves in class 141120lf do not have complex multiplication.

Modular form 141120.2.a.lf

sage: E.q_eigenform(10)
 
\(q - q^{5} - 4 q^{11} - 2 q^{13} - 2 q^{17} - 8 q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

sage: E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the Cremona numbering.

\(\left(\begin{array}{rrrr} 1 & 2 & 4 & 4 \\ 2 & 1 & 2 & 2 \\ 4 & 2 & 1 & 4 \\ 4 & 2 & 4 & 1 \end{array}\right)\)

Isogeny graph

sage: E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with Cremona labels.