Show commands:
SageMath
E = EllipticCurve("lj1")
E.isogeny_class()
Elliptic curves in class 141120lj
sage: E.isogeny_class().curves
LMFDB label | Cremona label | Weierstrass coefficients | j-invariant | Discriminant | Torsion structure | Modular degree | Faltings height | Optimality |
---|---|---|---|---|---|---|---|---|
141120.bd7 | 141120lj1 | \([0, 0, 0, 5926452, 4184495728]\) | \(1023887723039/928972800\) | \(-20886164228147458867200\) | \([2]\) | \(9437184\) | \(2.9701\) | \(\Gamma_0(N)\)-optimal |
141120.bd6 | 141120lj2 | \([0, 0, 0, -30200268, 37464430192]\) | \(135487869158881/51438240000\) | \(1156489757554649333760000\) | \([2, 2]\) | \(18874368\) | \(3.3167\) | |
141120.bd4 | 141120lj3 | \([0, 0, 0, -425336268, 3375415303792]\) | \(378499465220294881/120530818800\) | \(2709903321184305099571200\) | \([2]\) | \(37748736\) | \(3.6633\) | |
141120.bd5 | 141120lj4 | \([0, 0, 0, -213091788, -1170570637712]\) | \(47595748626367201/1215506250000\) | \(27328316994684518400000000\) | \([2, 2]\) | \(37748736\) | \(3.6633\) | |
141120.bd8 | 141120lj5 | \([0, 0, 0, 35843892, -3741877063568]\) | \(226523624554079/269165039062500\) | \(-6051657497760000000000000000\) | \([2]\) | \(75497472\) | \(4.0098\) | |
141120.bd2 | 141120lj6 | \([0, 0, 0, -3388291788, -75913508557712]\) | \(191342053882402567201/129708022500\) | \(2916235071299445719040000\) | \([2, 2]\) | \(75497472\) | \(4.0098\) | |
141120.bd3 | 141120lj7 | \([0, 0, 0, -3367123788, -76908836384912]\) | \(-187778242790732059201/4984939585440150\) | \(-112076765701747439870450073600\) | \([2]\) | \(150994944\) | \(4.3564\) | |
141120.bd1 | 141120lj8 | \([0, 0, 0, -54212659788, -4858466207610512]\) | \(783736670177727068275201/360150\) | \(8097279109536153600\) | \([2]\) | \(150994944\) | \(4.3564\) |
Rank
sage: E.rank()
The elliptic curves in class 141120lj have rank \(1\).
Complex multiplication
The elliptic curves in class 141120lj do not have complex multiplication.Modular form 141120.2.a.lj
sage: E.q_eigenform(10)
Isogeny matrix
sage: E.isogeny_class().matrix()
The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the Cremona numbering.
\(\left(\begin{array}{rrrrrrrr} 1 & 2 & 4 & 4 & 8 & 8 & 16 & 16 \\ 2 & 1 & 2 & 2 & 4 & 4 & 8 & 8 \\ 4 & 2 & 1 & 4 & 8 & 8 & 16 & 16 \\ 4 & 2 & 4 & 1 & 2 & 2 & 4 & 4 \\ 8 & 4 & 8 & 2 & 1 & 4 & 8 & 8 \\ 8 & 4 & 8 & 2 & 4 & 1 & 2 & 2 \\ 16 & 8 & 16 & 4 & 8 & 2 & 1 & 4 \\ 16 & 8 & 16 & 4 & 8 & 2 & 4 & 1 \end{array}\right)\)
Isogeny graph
sage: E.isogeny_graph().plot(edge_labels=True)
The vertices are labelled with Cremona labels.