Properties

Label 141120lj
Number of curves $8$
Conductor $141120$
CM no
Rank $1$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
E = EllipticCurve("lj1")
 
E.isogeny_class()
 

Elliptic curves in class 141120lj

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
141120.bd7 141120lj1 \([0, 0, 0, 5926452, 4184495728]\) \(1023887723039/928972800\) \(-20886164228147458867200\) \([2]\) \(9437184\) \(2.9701\) \(\Gamma_0(N)\)-optimal
141120.bd6 141120lj2 \([0, 0, 0, -30200268, 37464430192]\) \(135487869158881/51438240000\) \(1156489757554649333760000\) \([2, 2]\) \(18874368\) \(3.3167\)  
141120.bd4 141120lj3 \([0, 0, 0, -425336268, 3375415303792]\) \(378499465220294881/120530818800\) \(2709903321184305099571200\) \([2]\) \(37748736\) \(3.6633\)  
141120.bd5 141120lj4 \([0, 0, 0, -213091788, -1170570637712]\) \(47595748626367201/1215506250000\) \(27328316994684518400000000\) \([2, 2]\) \(37748736\) \(3.6633\)  
141120.bd8 141120lj5 \([0, 0, 0, 35843892, -3741877063568]\) \(226523624554079/269165039062500\) \(-6051657497760000000000000000\) \([2]\) \(75497472\) \(4.0098\)  
141120.bd2 141120lj6 \([0, 0, 0, -3388291788, -75913508557712]\) \(191342053882402567201/129708022500\) \(2916235071299445719040000\) \([2, 2]\) \(75497472\) \(4.0098\)  
141120.bd3 141120lj7 \([0, 0, 0, -3367123788, -76908836384912]\) \(-187778242790732059201/4984939585440150\) \(-112076765701747439870450073600\) \([2]\) \(150994944\) \(4.3564\)  
141120.bd1 141120lj8 \([0, 0, 0, -54212659788, -4858466207610512]\) \(783736670177727068275201/360150\) \(8097279109536153600\) \([2]\) \(150994944\) \(4.3564\)  

Rank

sage: E.rank()
 

The elliptic curves in class 141120lj have rank \(1\).

Complex multiplication

The elliptic curves in class 141120lj do not have complex multiplication.

Modular form 141120.2.a.lj

sage: E.q_eigenform(10)
 
\(q - q^{5} - 4 q^{11} - 2 q^{13} + 2 q^{17} + 4 q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

sage: E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the Cremona numbering.

\(\left(\begin{array}{rrrrrrrr} 1 & 2 & 4 & 4 & 8 & 8 & 16 & 16 \\ 2 & 1 & 2 & 2 & 4 & 4 & 8 & 8 \\ 4 & 2 & 1 & 4 & 8 & 8 & 16 & 16 \\ 4 & 2 & 4 & 1 & 2 & 2 & 4 & 4 \\ 8 & 4 & 8 & 2 & 1 & 4 & 8 & 8 \\ 8 & 4 & 8 & 2 & 4 & 1 & 2 & 2 \\ 16 & 8 & 16 & 4 & 8 & 2 & 1 & 4 \\ 16 & 8 & 16 & 4 & 8 & 2 & 4 & 1 \end{array}\right)\)

Isogeny graph

sage: E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with Cremona labels.