Properties

Label 141570da
Number of curves $4$
Conductor $141570$
CM no
Rank $1$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
E = EllipticCurve("da1")
 
E.isogeny_class()
 

Elliptic curves in class 141570da

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
141570.cc3 141570da1 \([1, -1, 0, -14724, 670720]\) \(273359449/9360\) \(12088140189840\) \([2]\) \(368640\) \(1.2821\) \(\Gamma_0(N)\)-optimal
141570.cc2 141570da2 \([1, -1, 0, -36504, -1755572]\) \(4165509529/1368900\) \(1767890502764100\) \([2, 2]\) \(737280\) \(1.6287\)  
141570.cc4 141570da3 \([1, -1, 0, 105066, -12146810]\) \(99317171591/106616250\) \(-137691471849896250\) \([2]\) \(1474560\) \(1.9753\)  
141570.cc1 141570da4 \([1, -1, 0, -526554, -146908382]\) \(12501706118329/2570490\) \(3319705499634810\) \([2]\) \(1474560\) \(1.9753\)  

Rank

sage: E.rank()
 

The elliptic curves in class 141570da have rank \(1\).

Complex multiplication

The elliptic curves in class 141570da do not have complex multiplication.

Modular form 141570.2.a.da

sage: E.q_eigenform(10)
 
\(q - q^{2} + q^{4} + q^{5} - q^{8} - q^{10} + q^{13} + q^{16} - 6 q^{17} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

sage: E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the Cremona numbering.

\(\left(\begin{array}{rrrr} 1 & 2 & 4 & 4 \\ 2 & 1 & 2 & 2 \\ 4 & 2 & 1 & 4 \\ 4 & 2 & 4 & 1 \end{array}\right)\)

Isogeny graph

sage: E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with Cremona labels.