Properties

Label 1436a
Number of curves 11
Conductor 14361436
CM no
Rank 22

Related objects

Downloads

Learn more

Show commands: SageMath
E = EllipticCurve("a1")
 
E.isogeny_class()
 

Elliptic curves in class 1436a

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
1436.a1 1436a1 [0,1,0,12,4][0, 1, 0, -12, 4] 810448/359810448/359 9190491904 [][] 192192 0.35195-0.35195 Γ0(N)\Gamma_0(N)-optimal

Rank

sage: E.rank()
 

The elliptic curve 1436a1 has rank 22.

Complex multiplication

The elliptic curves in class 1436a do not have complex multiplication.

Modular form 1436.2.a.a

sage: E.q_eigenform(10)
 
q2q33q53q7+q94q114q13+6q157q17+3q19+O(q20)q - 2 q^{3} - 3 q^{5} - 3 q^{7} + q^{9} - 4 q^{11} - 4 q^{13} + 6 q^{15} - 7 q^{17} + 3 q^{19} + O(q^{20}) Copy content Toggle raw display