Properties

Label 14400bs1
Conductor 1440014400
Discriminant 2.799×1012-2.799\times 10^{12}
j-invariant 2129615 \frac{21296}{15}
CM no
Rank 22
Torsion structure Z/2Z\Z/{2}\Z

Related objects

Downloads

Learn more

Show commands: Magma / Oscar / PariGP / SageMath

Minimal Weierstrass equation

Minimal Weierstrass equation

Simplified equation

y2=x3+3300x+34000y^2=x^3+3300x+34000 Copy content Toggle raw display (homogenize, simplify)
y2z=x3+3300xz2+34000z3y^2z=x^3+3300xz^2+34000z^3 Copy content Toggle raw display (dehomogenize, simplify)
y2=x3+3300x+34000y^2=x^3+3300x+34000 Copy content Toggle raw display (homogenize, minimize)

comment: Define the curve
 
sage: E = EllipticCurve([0, 0, 0, 3300, 34000])
 
gp: E = ellinit([0, 0, 0, 3300, 34000])
 
magma: E := EllipticCurve([0, 0, 0, 3300, 34000]);
 
oscar: E = elliptic_curve([0, 0, 0, 3300, 34000])
 
sage: E.short_weierstrass_model()
 
magma: WeierstrassModel(E);
 
oscar: short_weierstrass_model(E)
 

Mordell-Weil group structure

ZZZ/2Z\Z \oplus \Z \oplus \Z/{2}\Z

magma: MordellWeilGroup(E);
 

Mordell-Weil generators

PPh^(P)\hat{h}(P)Order
(5,225)(5, 225)0.797290180906973784266895681300.79729018090697378426689568130\infty
(30,400)(30, 400)0.976179342673086879795349610010.97617934267308687979534961001\infty
(10,0)(-10, 0)0022

Integral points

(10,0) \left(-10, 0\right) , (4,±144)(-4,\pm 144), (5,±225)(5,\pm 225), (14,±288)(14,\pm 288), (30,±400)(30,\pm 400), (54,±608)(54,\pm 608), (80,±900)(80,\pm 900), (140,±1800)(140,\pm 1800), (230,±3600)(230,\pm 3600), (566,±13536)(566,\pm 13536), (590,±14400)(590,\pm 14400), (1680,±68900)(1680,\pm 68900), (1805,±76725)(1805,\pm 76725), (3230,±183600)(3230,\pm 183600), (1353740,±1575081000)(1353740,\pm 1575081000) Copy content Toggle raw display

comment: Integral points
 
sage: E.integral_points()
 
magma: IntegralPoints(E);
 

Invariants

Conductor: NN  =  14400 14400  = 2632522^{6} \cdot 3^{2} \cdot 5^{2}
comment: Conductor
 
sage: E.conductor().factor()
 
gp: ellglobalred(E)[1]
 
magma: Conductor(E);
 
oscar: conductor(E)
 
Discriminant: Δ\Delta  =  2799360000000-2799360000000 = 12143757-1 \cdot 2^{14} \cdot 3^{7} \cdot 5^{7}
comment: Discriminant
 
sage: E.discriminant().factor()
 
gp: E.disc
 
magma: Discriminant(E);
 
oscar: discriminant(E)
 
j-invariant: jj  =  2129615 \frac{21296}{15}  = 2431511132^{4} \cdot 3^{-1} \cdot 5^{-1} \cdot 11^{3}
comment: j-invariant
 
sage: E.j_invariant().factor()
 
gp: E.j
 
magma: jInvariant(E);
 
oscar: j_invariant(E)
 
Endomorphism ring: End(E)\mathrm{End}(E) = Z\Z
Geometric endomorphism ring: End(EQ)\mathrm{End}(E_{\overline{\Q}})  =  Z\Z    (no potential complex multiplication)
sage: E.has_cm()
 
magma: HasComplexMultiplication(E);
 
Sato-Tate group: ST(E)\mathrm{ST}(E) = SU(2)\mathrm{SU}(2)
Faltings height: hFaltingsh_{\mathrm{Faltings}} ≈ 1.07685459508111047802351176651.0768545950811104780235117665
gp: ellheight(E)
 
magma: FaltingsHeight(E);
 
oscar: faltings_height(E)
 
Stable Faltings height: hstableh_{\mathrm{stable}} ≈ 1.0858422161232640826279279936-1.0858422161232640826279279936
magma: StableFaltingsHeight(E);
 
oscar: stable_faltings_height(E)
 
abcabc quality: QQ ≈ 0.85610744446457960.8561074444645796
Szpiro ratio: σm\sigma_{m} ≈ 3.75130007579029373.7513000757902937

BSD invariants

Analytic rank: ranr_{\mathrm{an}} = 2 2
sage: E.analytic_rank()
 
gp: ellanalyticrank(E)
 
magma: AnalyticRank(E);
 
Mordell-Weil rank: rr = 2 2
comment: Rank
 
sage: E.rank()
 
gp: [lower,upper] = ellrank(E)
 
magma: Rank(E);
 
Regulator: Reg(E/Q)\mathrm{Reg}(E/\Q) ≈ 0.757770592523328638567339044730.75777059252332863856733904473
comment: Regulator
 
sage: E.regulator()
 
G = E.gen \\ if available
 
matdet(ellheightmatrix(E,G))
 
magma: Regulator(E);
 
Real period: Ω\Omega ≈ 0.510597406046709322645947538840.51059740604670932264594753884
comment: Real Period
 
sage: E.period_lattice().omega()
 
gp: if(E.disc>0,2,1)*E.omega[1]
 
magma: (Discriminant(E) gt 0 select 2 else 1) * RealPeriod(E);
 
Tamagawa product: pcp\prod_{p}c_p = 64 64  = 222222 2^{2}\cdot2^{2}\cdot2^{2}
comment: Tamagawa numbers
 
sage: E.tamagawa_numbers()
 
gp: gr=ellglobalred(E); [[gr[4][i,1],gr[5][i][4]] | i<-[1..#gr[4][,1]]]
 
magma: TamagawaNumbers(E);
 
oscar: tamagawa_numbers(E)
 
Torsion order: #E(Q)tor\#E(\Q)_{\mathrm{tor}} = 22
comment: Torsion order
 
sage: E.torsion_order()
 
gp: elltors(E)[1]
 
magma: Order(TorsionSubgroup(E));
 
oscar: prod(torsion_structure(E)[1])
 
Special value: L(2)(E,1)/2! L^{(2)}(E,1)/2! ≈ 6.19065118273423277497244594716.1906511827342327749724459471
comment: Special L-value
 
r = E.rank();
 
E.lseries().dokchitser().derivative(1,r)/r.factorial()
 
gp: [r,L1r] = ellanalyticrank(E); L1r/r!
 
magma: Lr1 where r,Lr1 := AnalyticRank(E: Precision:=12);
 
Analytic order of Ш: Шan{}_{\mathrm{an}}  ≈  11    (rounded)
comment: Order of Sha
 
sage: E.sha().an_numerical()
 
magma: MordellWeilShaInformation(E);
 

BSD formula

6.190651183L(2)(E,1)/2!=?#Ш(E/Q)ΩEReg(E/Q)pcp#E(Q)tor210.5105970.75777164226.190651183\displaystyle 6.190651183 \approx L^{(2)}(E,1)/2! \overset{?}{=} \frac{\# Ш(E/\Q)\cdot \Omega_E \cdot \mathrm{Reg}(E/\Q) \cdot \prod_p c_p}{\#E(\Q)_{\rm tor}^2} \approx \frac{1 \cdot 0.510597 \cdot 0.757771 \cdot 64}{2^2} \approx 6.190651183

# self-contained SageMath code snippet for the BSD formula (checks rank, computes analytic sha)
 
E = EllipticCurve(%s); r = E.rank(); ar = E.analytic_rank(); assert r == ar;
 
Lr1 = E.lseries().dokchitser().derivative(1,r)/r.factorial(); sha = E.sha().an_numerical();
 
omega = E.period_lattice().omega(); reg = E.regulator(); tam = E.tamagawa_product(); tor = E.torsion_order();
 
assert r == ar; print("analytic sha: " + str(RR(Lr1) * tor^2 / (omega * reg * tam)))
 
/* self-contained Magma code snippet for the BSD formula (checks rank, computes analytic sha) */
 
E := EllipticCurve(%s); r := Rank(E); ar,Lr1 := AnalyticRank(E: Precision := 12); assert r eq ar;
 
sha := MordellWeilShaInformation(E); omega := RealPeriod(E) * (Discriminant(E) gt 0 select 2 else 1);
 
reg := Regulator(E); tam := &*TamagawaNumbers(E); tor := #TorsionSubgroup(E);
 
assert r eq ar; print "analytic sha:", Lr1 * tor^2 / (omega * reg * tam);
 

Modular invariants

Modular form   14400.2.a.k

q4q76q132q174q19+O(q20) q - 4 q^{7} - 6 q^{13} - 2 q^{17} - 4 q^{19} + O(q^{20}) Copy content Toggle raw display

comment: q-expansion of modular form
 
sage: E.q_eigenform(20)
 
\\ actual modular form, use for small N
 
[mf,F] = mffromell(E)
 
Ser(mfcoefs(mf,20),q)
 
\\ or just the series
 
Ser(ellan(E,20),q)*q
 
magma: ModularForm(E);
 

For more coefficients, see the Downloads section to the right.

Modular degree: 24576
comment: Modular degree
 
sage: E.modular_degree()
 
gp: ellmoddegree(E)
 
magma: ModularDegree(E);
 
Γ0(N) \Gamma_0(N) -optimal: yes
Manin constant: 1
comment: Manin constant
 
magma: ManinConstant(E);
 

Local data at primes of bad reduction

This elliptic curve is not semistable. There are 3 primes pp of bad reduction:

pp Tamagawa number Kodaira symbol Reduction type Root number ordp(N)\mathrm{ord}_p(N) ordp(Δ)\mathrm{ord}_p(\Delta) ordp(den(j))\mathrm{ord}_p(\mathrm{den}(j))
22 44 I4I_{4}^{*} additive 1 6 14 0
33 44 I1I_{1}^{*} additive -1 2 7 1
55 44 I1I_{1}^{*} additive 1 2 7 1

comment: Local data
 
sage: E.local_data()
 
gp: ellglobalred(E)[5]
 
magma: [LocalInformation(E,p) : p in BadPrimes(E)];
 
oscar: [(p,tamagawa_number(E,p), kodaira_symbol(E,p), reduction_type(E,p)) for p in bad_primes(E)]
 

Galois representations

The \ell-adic Galois representation has maximal image for all primes \ell except those listed in the table below.

prime \ell mod-\ell image \ell-adic image
22 2B 8.12.0.14

comment: mod p Galois image
 
sage: rho = E.galois_representation(); [rho.image_type(p) for p in rho.non_surjective()]
 
magma: [GaloisRepresentation(E,p): p in PrimesUpTo(20)];
 

gens = [[37, 42, 70, 13], [1, 8, 0, 1], [49, 48, 118, 55], [1, 0, 8, 1], [113, 8, 112, 9], [92, 119, 49, 114], [7, 6, 114, 115], [1, 4, 4, 17], [32, 117, 35, 118]]
 
GL(2,Integers(120)).subgroup(gens)
 
Gens := [[37, 42, 70, 13], [1, 8, 0, 1], [49, 48, 118, 55], [1, 0, 8, 1], [113, 8, 112, 9], [92, 119, 49, 114], [7, 6, 114, 115], [1, 4, 4, 17], [32, 117, 35, 118]];
 
sub<GL(2,Integers(120))|Gens>;
 

The image H:=ρE(Gal(Q/Q))H:=\rho_E(\Gal(\overline{\Q}/\Q)) of the adelic Galois representation has level 120=2335 120 = 2^{3} \cdot 3 \cdot 5 , index 4848, genus 00, and generators

(37427013),(1801),(494811855),(1081),(11381129),(9211949114),(76114115),(14417),(3211735118)\left(\begin{array}{rr} 37 & 42 \\ 70 & 13 \end{array}\right),\left(\begin{array}{rr} 1 & 8 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 49 & 48 \\ 118 & 55 \end{array}\right),\left(\begin{array}{rr} 1 & 0 \\ 8 & 1 \end{array}\right),\left(\begin{array}{rr} 113 & 8 \\ 112 & 9 \end{array}\right),\left(\begin{array}{rr} 92 & 119 \\ 49 & 114 \end{array}\right),\left(\begin{array}{rr} 7 & 6 \\ 114 & 115 \end{array}\right),\left(\begin{array}{rr} 1 & 4 \\ 4 & 17 \end{array}\right),\left(\begin{array}{rr} 32 & 117 \\ 35 & 118 \end{array}\right).

Input positive integer mm to see the generators of the reduction of HH to GL2(Z/mZ)\mathrm{GL}_2(\Z/m\Z):

The torsion field K:=Q(E[120])K:=\Q(E[120]) is a degree-737280737280 Galois extension of Q\Q with Gal(K/Q)\Gal(K/\Q) isomorphic to the projection of HH to GL2(Z/120Z)\GL_2(\Z/120\Z).

The table below list all primes \ell for which the Serre invariants associated to the mod-\ell Galois representation are exceptional.

\ell Reduction type Serre weight Serre conductor
22 additive 22 225=3252 225 = 3^{2} \cdot 5^{2}
33 additive 88 1600=2652 1600 = 2^{6} \cdot 5^{2}
55 additive 1818 576=2632 576 = 2^{6} \cdot 3^{2}

Isogenies

gp: ellisomat(E)
 

This curve has non-trivial cyclic isogenies of degree dd for d=d= 2 and 4.
Its isogeny class 14400bs consists of 4 curves linked by isogenies of degrees dividing 4.

Twists

The minimal quadratic twist of this elliptic curve is 120b1, its twist by 120-120.

Growth of torsion in number fields

The number fields KK of degree less than 24 such that E(K)torsE(K)_{\rm tors} is strictly larger than E(Q)torsE(\Q)_{\rm tors} Z/2Z\cong \Z/{2}\Z are as follows:

[K:Q][K:\Q] KK E(K)torsE(K)_{\rm tors} Base change curve
22 Q(15)\Q(\sqrt{-15}) Z/2ZZ/2Z\Z/2\Z \oplus \Z/2\Z not in database
22 Q(10)\Q(\sqrt{10}) Z/4Z\Z/4\Z not in database
22 Q(6)\Q(\sqrt{-6}) Z/4Z\Z/4\Z not in database
44 Q(6,10)\Q(\sqrt{-6}, \sqrt{10}) Z/2ZZ/4Z\Z/2\Z \oplus \Z/4\Z not in database
88 8.0.186624000000.20 Z/2ZZ/4Z\Z/2\Z \oplus \Z/4\Z not in database
88 8.4.29859840000.2 Z/8Z\Z/8\Z not in database
88 8.0.82944000000.8 Z/2ZZ/8Z\Z/2\Z \oplus \Z/8\Z not in database
88 8.2.181398528000000.41 Z/6Z\Z/6\Z not in database
1616 deg 16 Z/4ZZ/4Z\Z/4\Z \oplus \Z/4\Z not in database
1616 16.0.891610044825600000000.5 Z/2ZZ/8Z\Z/2\Z \oplus \Z/8\Z not in database
1616 deg 16 Z/2ZZ/6Z\Z/2\Z \oplus \Z/6\Z not in database
1616 deg 16 Z/12Z\Z/12\Z not in database
1616 deg 16 Z/12Z\Z/12\Z not in database

We only show fields where the torsion growth is primitive. For fields not in the database, click on the degree shown to reveal the defining polynomial.

Iwasawa invariants

pp 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47
Reduction type add add add ord ss ord ord ord ord ord ss ord ord ord ord
λ\lambda-invariant(s) - - - 2 2,2 2 2 4 2 2 2,2 2 2 2 2
μ\mu-invariant(s) - - - 0 0,0 0 0 0 0 0 0,0 0 0 0 0

An entry - indicates that the invariants are not computed because the reduction is additive.

pp-adic regulators

Note: pp-adic regulator data only exists for primes p5p\ge 5 of good ordinary reduction.