Properties

Label 144400.br
Number of curves $2$
Conductor $144400$
CM no
Rank $0$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
E = EllipticCurve("br1")
 
E.isogeny_class()
 

Elliptic curves in class 144400.br

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
144400.br1 144400u2 \([0, 0, 0, -3564875, 2529256250]\) \(13312053/361\) \(135868504328000000000\) \([2]\) \(3686400\) \(2.6434\)  
144400.br2 144400u1 \([0, 0, 0, 45125, 128606250]\) \(27/19\) \(-7150973912000000000\) \([2]\) \(1843200\) \(2.2969\) \(\Gamma_0(N)\)-optimal

Rank

sage: E.rank()
 

The elliptic curves in class 144400.br have rank \(0\).

Complex multiplication

The elliptic curves in class 144400.br do not have complex multiplication.

Modular form 144400.2.a.br

sage: E.q_eigenform(10)
 
\(q + 2 q^{7} - 3 q^{9} + 4 q^{11} - 2 q^{13} - 4 q^{17} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

sage: E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rr} 1 & 2 \\ 2 & 1 \end{array}\right)\)

Isogeny graph

sage: E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.