Properties

Label 144400t
Number of curves $2$
Conductor $144400$
CM no
Rank $0$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
E = EllipticCurve("t1")
 
E.isogeny_class()
 

Elliptic curves in class 144400t

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
144400.bj2 144400t1 \([0, 0, 0, 1805, 1028850]\) \(27/19\) \(-457662330368000\) \([2]\) \(368640\) \(1.4921\) \(\Gamma_0(N)\)-optimal
144400.bj1 144400t2 \([0, 0, 0, -142595, 20234050]\) \(13312053/361\) \(8695584276992000\) \([2]\) \(737280\) \(1.8387\)  

Rank

sage: E.rank()
 

The elliptic curves in class 144400t have rank \(0\).

Complex multiplication

The elliptic curves in class 144400t do not have complex multiplication.

Modular form 144400.2.a.t

sage: E.q_eigenform(10)
 
\(q - 2 q^{7} - 3 q^{9} + 4 q^{11} + 2 q^{13} + 4 q^{17} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

sage: E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the Cremona numbering.

\(\left(\begin{array}{rr} 1 & 2 \\ 2 & 1 \end{array}\right)\)

Isogeny graph

sage: E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with Cremona labels.