Show commands:
SageMath
E = EllipticCurve("c1")
E.isogeny_class()
Elliptic curves in class 1470.c
sage: E.isogeny_class().curves
LMFDB label | Cremona label | Weierstrass coefficients | j-invariant | Discriminant | Torsion structure | Modular degree | Faltings height | Optimality |
---|---|---|---|---|---|---|---|---|
1470.c1 | 1470c1 | \([1, 1, 0, -1068, -8112]\) | \(393349474783/153600000\) | \(52684800000\) | \([2]\) | \(2240\) | \(0.75601\) | \(\Gamma_0(N)\)-optimal |
1470.c2 | 1470c2 | \([1, 1, 0, 3412, -53808]\) | \(12801408679457/11250000000\) | \(-3858750000000\) | \([2]\) | \(4480\) | \(1.1026\) |
Rank
sage: E.rank()
The elliptic curves in class 1470.c have rank \(0\).
Complex multiplication
The elliptic curves in class 1470.c do not have complex multiplication.Modular form 1470.2.a.c
sage: E.q_eigenform(10)
Isogeny matrix
sage: E.isogeny_class().matrix()
The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.
\(\left(\begin{array}{rr} 1 & 2 \\ 2 & 1 \end{array}\right)\)
Isogeny graph
sage: E.isogeny_graph().plot(edge_labels=True)
The vertices are labelled with LMFDB labels.