y2+xy=x3+x2−1068x−8112
|
(homogenize, simplify) |
y2z+xyz=x3+x2z−1068xz2−8112z3
|
(dehomogenize, simplify) |
y2=x3−1384803x−357704802
|
(homogenize, minimize) |
sage:E = EllipticCurve([1, 1, 0, -1068, -8112])
gp:E = ellinit([1, 1, 0, -1068, -8112])
magma:E := EllipticCurve([1, 1, 0, -1068, -8112]);
oscar:E = elliptic_curve([1, 1, 0, -1068, -8112])
sage:E.short_weierstrass_model()
magma:WeierstrassModel(E);
oscar:short_weierstrass_model(E)
Z/2Z
magma:MordellWeilGroup(E);
(−8,4)
sage:E.integral_points()
magma:IntegralPoints(E);
Invariants
Conductor: |
N |
= |
1470 | = | 2⋅3⋅5⋅72 |
sage:E.conductor().factor()
gp:ellglobalred(E)[1]
magma:Conductor(E);
oscar:conductor(E)
|
Discriminant: |
Δ |
= |
52684800000 | = | 214⋅3⋅55⋅73 |
sage:E.discriminant().factor()
gp:E.disc
magma:Discriminant(E);
oscar:discriminant(E)
|
j-invariant: |
j |
= |
153600000393349474783 | = | 2−14⋅3−1⋅5−5⋅173⋅4313 |
sage:E.j_invariant().factor()
gp:E.j
magma:jInvariant(E);
oscar:j_invariant(E)
|
Endomorphism ring: |
End(E) | = | Z |
Geometric endomorphism ring: |
End(EQ) |
= |
Z
(no potential complex multiplication)
|
sage:E.has_cm()
magma:HasComplexMultiplication(E);
|
Sato-Tate group: |
ST(E) | = | SU(2) |
Faltings height: |
hFaltings | ≈ | 0.75601436527364238808061844616 |
gp:ellheight(E)
magma:FaltingsHeight(E);
oscar:faltings_height(E)
|
Stable Faltings height: |
hstable | ≈ | 0.26953682800981406180428026030 |
magma:StableFaltingsHeight(E);
oscar:stable_faltings_height(E)
|
abc quality: |
Q | ≈ | 1.0244474458248836 |
|
Szpiro ratio: |
σm | ≈ | 4.4612115557986005 |
|
Analytic rank: |
ran | = | 0
|
sage:E.analytic_rank()
gp:ellanalyticrank(E)
magma:AnalyticRank(E);
|
Mordell-Weil rank: |
r | = | 0
|
sage:E.rank()
gp:[lower,upper] = ellrank(E)
magma:Rank(E);
|
Regulator: |
Reg(E/Q) | = | 1 |
sage:E.regulator()
gp:G = E.gen \\ if available
matdet(ellheightmatrix(E,G))
magma:Regulator(E);
|
Real period: |
Ω | ≈ | 0.86331682154926308904263162936 |
sage:E.period_lattice().omega()
gp:if(E.disc>0,2,1)*E.omega[1]
magma:(Discriminant(E) gt 0 select 2 else 1) * RealPeriod(E);
|
Tamagawa product: |
∏pcp | = | 4
= 2⋅1⋅1⋅2
|
sage:E.tamagawa_numbers()
gp:gr=ellglobalred(E); [[gr[4][i,1],gr[5][i][4]] | i<-[1..#gr[4][,1]]]
magma:TamagawaNumbers(E);
oscar:tamagawa_numbers(E)
|
Torsion order: |
#E(Q)tor | = | 2 |
sage:E.torsion_order()
gp:elltors(E)[1]
magma:Order(TorsionSubgroup(E));
oscar:prod(torsion_structure(E)[1])
|
Special value: |
L(E,1) | ≈ | 0.86331682154926308904263162936 |
sage:r = E.rank();
E.lseries().dokchitser().derivative(1,r)/r.factorial()
gp:[r,L1r] = ellanalyticrank(E); L1r/r!
magma:Lr1 where r,Lr1 := AnalyticRank(E: Precision:=12);
|
Analytic order of Ш: |
Шan |
= |
1
(exact)
|
sage:E.sha().an_numerical()
magma:MordellWeilShaInformation(E);
|
0.863316822≈L(E,1)=#E(Q)tor2#Ш(E/Q)⋅ΩE⋅Reg(E/Q)⋅∏pcp≈221⋅0.863317⋅1.000000⋅4≈0.863316822
sage:# self-contained SageMath code snippet for the BSD formula (checks rank, computes analytic sha)
E = EllipticCurve([1, 1, 0, -1068, -8112]); r = E.rank(); ar = E.analytic_rank(); assert r == ar;
Lr1 = E.lseries().dokchitser().derivative(1,r)/r.factorial(); sha = E.sha().an_numerical();
omega = E.period_lattice().omega(); reg = E.regulator(); tam = E.tamagawa_product(); tor = E.torsion_order();
assert r == ar; print("analytic sha: " + str(RR(Lr1) * tor^2 / (omega * reg * tam)))
magma:/* self-contained Magma code snippet for the BSD formula (checks rank, computes analytic sha) */
E := EllipticCurve([1, 1, 0, -1068, -8112]); r := Rank(E); ar,Lr1 := AnalyticRank(E: Precision := 12); assert r eq ar;
sha := MordellWeilShaInformation(E); omega := RealPeriod(E) * (Discriminant(E) gt 0 select 2 else 1);
reg := Regulator(E); tam := &*TamagawaNumbers(E); tor := #TorsionSubgroup(E);
assert r eq ar; print "analytic sha:", Lr1 * tor^2 / (omega * reg * tam);
Modular form
1470.2.a.c
q−q2−q3+q4−q5+q6−q8+q9+q10+6q11−q12−6q13+q15+q16−q18+4q19+O(q20)
sage:E.q_eigenform(20)
gp:\\ actual modular form, use for small N
[mf,F] = mffromell(E)
Ser(mfcoefs(mf,20),q)
\\ or just the series
Ser(ellan(E,20),q)*q
magma:ModularForm(E);
For more coefficients, see the Downloads section to the right.
This elliptic curve is not semistable.
There
are 4 primes p
of bad reduction:
sage:E.local_data()
gp:ellglobalred(E)[5]
magma:[LocalInformation(E,p) : p in BadPrimes(E)];
oscar:[(p,tamagawa_number(E,p), kodaira_symbol(E,p), reduction_type(E,p)) for p in bad_primes(E)]
The ℓ-adic Galois representation has maximal image
for all primes ℓ except those listed in the table below.
sage:rho = E.galois_representation(); [rho.image_type(p) for p in rho.non_surjective()]
magma:[GaloisRepresentation(E,p): p in PrimesUpTo(20)];
sage:gens = [[837, 4, 836, 5], [1, 2, 2, 5], [737, 106, 104, 735], [1, 4, 0, 1], [421, 4, 2, 9], [124, 1, 599, 0], [562, 1, 559, 0], [1, 0, 4, 1], [674, 1, 503, 0], [3, 4, 8, 11]]
GL(2,Integers(840)).subgroup(gens)
magma:Gens := [[837, 4, 836, 5], [1, 2, 2, 5], [737, 106, 104, 735], [1, 4, 0, 1], [421, 4, 2, 9], [124, 1, 599, 0], [562, 1, 559, 0], [1, 0, 4, 1], [674, 1, 503, 0], [3, 4, 8, 11]];
sub<GL(2,Integers(840))|Gens>;
The image H:=ρE(Gal(Q/Q)) of the adelic Galois representation has
level 840=23⋅3⋅5⋅7, index 12, genus 0, and generators
(83783645),(1225),(737104106735),(1041),(421249),(12459910),(56255910),(1401),(67450310),(38411).
The torsion field K:=Q(E[840]) is a degree-5945425920 Galois extension of Q with Gal(K/Q) isomorphic to the projection of H to GL2(Z/840Z).
The table below list all primes ℓ for which the Serre invariants associated to the mod-ℓ Galois representation are exceptional.
ℓ |
Reduction type |
Serre weight |
Serre conductor |
2 |
nonsplit multiplicative |
4 |
105=3⋅5⋅7 |
3 |
nonsplit multiplicative |
4 |
490=2⋅5⋅72 |
5 |
nonsplit multiplicative |
6 |
294=2⋅3⋅72 |
7 |
additive |
20 |
15=3⋅5 |
gp:ellisomat(E)
This curve has non-trivial cyclic isogenies of degree d for d=
2.
Its isogeny class 1470c
consists of 2 curves linked by isogenies of
degree 2.
This elliptic curve is its own minimal quadratic twist.
The number fields K of degree less than 24 such that
E(K)tors is strictly larger than E(Q)tors
≅Z/2Z
are as follows:
We only show fields where the torsion growth is primitive.
For fields not in the database, click on the degree shown to reveal the defining polynomial.
All Iwasawa λ and μ-invariants for primes p≥3 of good reduction are zero.
An entry - indicates that the invariants are not computed because the reduction is additive.
p-adic regulators
All p-adic regulators are identically 1 since the rank is 0.