Properties

Label 147175a
Number of curves 22
Conductor 147175147175
CM no
Rank 00
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
E = EllipticCurve("a1")
 
E.isogeny_class()
 

Elliptic curves in class 147175a

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
147175.b2 147175a1 [0,1,1,35042,3540182][0, -1, 1, 35042, -3540182] 4096/74096/7 8132350091796875-8132350091796875 [][] 980000980000 1.73781.7378 Γ0(N)\Gamma_0(N)-optimal
147175.b1 147175a2 [0,1,1,3118708,2131548568][0, -1, 1, -3118708, 2131548568] 2887553024/16807-2887553024/16807 19525772570404296875-19525772570404296875 [][] 49000004900000 2.54262.5426  

Rank

sage: E.rank()
 

The elliptic curves in class 147175a have rank 00.

Complex multiplication

The elliptic curves in class 147175a do not have complex multiplication.

Modular form 147175.2.a.a

sage: E.q_eigenform(10)
 
q2q2q3+2q4+2q6q72q9+3q112q12+q13+2q144q167q17+4q18+O(q20)q - 2 q^{2} - q^{3} + 2 q^{4} + 2 q^{6} - q^{7} - 2 q^{9} + 3 q^{11} - 2 q^{12} + q^{13} + 2 q^{14} - 4 q^{16} - 7 q^{17} + 4 q^{18} + O(q^{20}) Copy content Toggle raw display

Isogeny matrix

sage: E.isogeny_class().matrix()
 

The i,ji,j entry is the smallest degree of a cyclic isogeny between the ii-th and jj-th curve in the isogeny class, in the Cremona numbering.

(1551)\left(\begin{array}{rr} 1 & 5 \\ 5 & 1 \end{array}\right)

Isogeny graph

sage: E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with Cremona labels.