Properties

Label 147175a
Number of curves $2$
Conductor $147175$
CM no
Rank $0$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
E = EllipticCurve("a1")
 
E.isogeny_class()
 

Elliptic curves in class 147175a

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
147175.b2 147175a1 \([0, -1, 1, 35042, -3540182]\) \(4096/7\) \(-8132350091796875\) \([]\) \(980000\) \(1.7378\) \(\Gamma_0(N)\)-optimal
147175.b1 147175a2 \([0, -1, 1, -3118708, 2131548568]\) \(-2887553024/16807\) \(-19525772570404296875\) \([]\) \(4900000\) \(2.5426\)  

Rank

sage: E.rank()
 

The elliptic curves in class 147175a have rank \(0\).

Complex multiplication

The elliptic curves in class 147175a do not have complex multiplication.

Modular form 147175.2.a.a

sage: E.q_eigenform(10)
 
\(q - 2 q^{2} - q^{3} + 2 q^{4} + 2 q^{6} - q^{7} - 2 q^{9} + 3 q^{11} - 2 q^{12} + q^{13} + 2 q^{14} - 4 q^{16} - 7 q^{17} + 4 q^{18} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

sage: E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the Cremona numbering.

\(\left(\begin{array}{rr} 1 & 5 \\ 5 & 1 \end{array}\right)\)

Isogeny graph

sage: E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with Cremona labels.