Properties

Label 14800.bc
Number of curves $2$
Conductor $14800$
CM no
Rank $0$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
E = EllipticCurve("bc1")
 
E.isogeny_class()
 

Elliptic curves in class 14800.bc

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
14800.bc1 14800k2 \([0, 1, 0, -300533, 63314063]\) \(750484394082304/578125\) \(2312500000000\) \([]\) \(41472\) \(1.6803\)  
14800.bc2 14800k1 \([0, 1, 0, -4533, 44063]\) \(2575826944/1266325\) \(5065300000000\) \([]\) \(13824\) \(1.1310\) \(\Gamma_0(N)\)-optimal

Rank

sage: E.rank()
 

The elliptic curves in class 14800.bc have rank \(0\).

Complex multiplication

The elliptic curves in class 14800.bc do not have complex multiplication.

Modular form 14800.2.a.bc

sage: E.q_eigenform(10)
 
\(q + q^{3} - q^{7} - 2 q^{9} + 3 q^{11} + 4 q^{13} + 4 q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

sage: E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rr} 1 & 3 \\ 3 & 1 \end{array}\right)\)

Isogeny graph

sage: E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.