Properties

Label 148225cv2
Conductor 148225148225
Discriminant 4.379×1017-4.379\times 10^{17}
j-invariant 288755302416807 -\frac{2887553024}{16807}
CM no
Rank 00
Torsion structure trivial

Related objects

Downloads

Learn more

Show commands: Magma / Oscar / PariGP / SageMath

Minimal Weierstrass equation

Minimal Weierstrass equation

Simplified equation

y2+y=x3+x2879468x+318751549y^2+y=x^3+x^2-879468x+318751549 Copy content Toggle raw display (homogenize, simplify)
y2z+yz2=x3+x2z879468xz2+318751549z3y^2z+yz^2=x^3+x^2z-879468xz^2+318751549z^3 Copy content Toggle raw display (dehomogenize, simplify)
y2=x31139790960x+14885349771600y^2=x^3-1139790960x+14885349771600 Copy content Toggle raw display (homogenize, minimize)

comment: Define the curve
 
sage: E = EllipticCurve([0, 1, 1, -879468, 318751549])
 
gp: E = ellinit([0, 1, 1, -879468, 318751549])
 
magma: E := EllipticCurve([0, 1, 1, -879468, 318751549]);
 
oscar: E = elliptic_curve([0, 1, 1, -879468, 318751549])
 
sage: E.short_weierstrass_model()
 
magma: WeierstrassModel(E);
 
oscar: short_weierstrass_model(E)
 

Mordell-Weil group structure

trivial

magma: MordellWeilGroup(E);
 

Invariants

Conductor: NN  =  148225 148225  = 52721125^{2} \cdot 7^{2} \cdot 11^{2}
comment: Conductor
 
sage: E.conductor().factor()
 
gp: ellglobalred(E)[1]
 
magma: Conductor(E);
 
oscar: conductor(E)
 
Discriminant: Δ\Delta  =  437869367769477875-437869367769477875 = 153711116-1 \cdot 5^{3} \cdot 7^{11} \cdot 11^{6}
comment: Discriminant
 
sage: E.discriminant().factor()
 
gp: E.disc
 
magma: Discriminant(E);
 
oscar: discriminant(E)
 
j-invariant: jj  =  288755302416807 -\frac{2887553024}{16807}  = 121275893-1 \cdot 2^{12} \cdot 7^{-5} \cdot 89^{3}
comment: j-invariant
 
sage: E.j_invariant().factor()
 
gp: E.j
 
magma: jInvariant(E);
 
oscar: j_invariant(E)
 
Endomorphism ring: End(E)\mathrm{End}(E) = Z\Z
Geometric endomorphism ring: End(EQ)\mathrm{End}(E_{\overline{\Q}})  =  Z\Z    (no potential complex multiplication)
sage: E.has_cm()
 
magma: HasComplexMultiplication(E);
 
Sato-Tate group: ST(E)\mathrm{ST}(E) = SU(2)\mathrm{SU}(2)
Faltings height: hFaltingsh_{\mathrm{Faltings}} ≈ 2.22609550477835841651576996882.2260955047783584165157699688
gp: ellheight(E)
 
magma: FaltingsHeight(E);
 
oscar: faltings_height(E)
 
Stable Faltings height: hstableh_{\mathrm{stable}} ≈ 0.34816668425700860171806802521-0.34816668425700860171806802521
magma: StableFaltingsHeight(E);
 
oscar: stable_faltings_height(E)
 
abcabc quality: QQ ≈ 0.98803115342998050.9880311534299805
Szpiro ratio: σm\sigma_{m} ≈ 4.42488456839928554.4248845683992855

BSD invariants

Analytic rank: ranr_{\mathrm{an}} = 0 0
sage: E.analytic_rank()
 
gp: ellanalyticrank(E)
 
magma: AnalyticRank(E);
 
Mordell-Weil rank: rr = 0 0
comment: Rank
 
sage: E.rank()
 
gp: [lower,upper] = ellrank(E)
 
magma: Rank(E);
 
Regulator: Reg(E/Q)\mathrm{Reg}(E/\Q) = 11
comment: Regulator
 
sage: E.regulator()
 
G = E.gen \\ if available
 
matdet(ellheightmatrix(E,G))
 
magma: Regulator(E);
 
Real period: Ω\Omega ≈ 0.299091873654437478919124349180.29909187365443747891912434918
comment: Real Period
 
sage: E.period_lattice().omega()
 
gp: if(E.disc>0,2,1)*E.omega[1]
 
magma: (Discriminant(E) gt 0 select 2 else 1) * RealPeriod(E);
 
Tamagawa product: pcp\prod_{p}c_p = 4 4  = 221 2\cdot2\cdot1
comment: Tamagawa numbers
 
sage: E.tamagawa_numbers()
 
gp: gr=ellglobalred(E); [[gr[4][i,1],gr[5][i][4]] | i<-[1..#gr[4][,1]]]
 
magma: TamagawaNumbers(E);
 
oscar: tamagawa_numbers(E)
 
Torsion order: #E(Q)tor\#E(\Q)_{\mathrm{tor}} = 11
comment: Torsion order
 
sage: E.torsion_order()
 
gp: elltors(E)[1]
 
magma: Order(TorsionSubgroup(E));
 
oscar: prod(torsion_structure(E)[1])
 
Special value: L(E,1) L(E,1) ≈ 1.19636749461774991567649739671.1963674946177499156764973967
comment: Special L-value
 
r = E.rank();
 
E.lseries().dokchitser().derivative(1,r)/r.factorial()
 
gp: [r,L1r] = ellanalyticrank(E); L1r/r!
 
magma: Lr1 where r,Lr1 := AnalyticRank(E: Precision:=12);
 
Analytic order of Ш: Шan{}_{\mathrm{an}}  =  11    (exact)
comment: Order of Sha
 
sage: E.sha().an_numerical()
 
magma: MordellWeilShaInformation(E);
 

BSD formula

1.196367495L(E,1)=#Ш(E/Q)ΩEReg(E/Q)pcp#E(Q)tor210.2990921.0000004121.196367495\displaystyle 1.196367495 \approx L(E,1) = \frac{\# Ш(E/\Q)\cdot \Omega_E \cdot \mathrm{Reg}(E/\Q) \cdot \prod_p c_p}{\#E(\Q)_{\rm tor}^2} \approx \frac{1 \cdot 0.299092 \cdot 1.000000 \cdot 4}{1^2} \approx 1.196367495

# self-contained SageMath code snippet for the BSD formula (checks rank, computes analytic sha)
 
E = EllipticCurve(%s); r = E.rank(); ar = E.analytic_rank(); assert r == ar;
 
Lr1 = E.lseries().dokchitser().derivative(1,r)/r.factorial(); sha = E.sha().an_numerical();
 
omega = E.period_lattice().omega(); reg = E.regulator(); tam = E.tamagawa_product(); tor = E.torsion_order();
 
assert r == ar; print("analytic sha: " + str(RR(Lr1) * tor^2 / (omega * reg * tam)))
 
/* self-contained Magma code snippet for the BSD formula (checks rank, computes analytic sha) */
 
E := EllipticCurve(%s); r := Rank(E); ar,Lr1 := AnalyticRank(E: Precision := 12); assert r eq ar;
 
sha := MordellWeilShaInformation(E); omega := RealPeriod(E) * (Discriminant(E) gt 0 select 2 else 1);
 
reg := Regulator(E); tam := &*TamagawaNumbers(E); tor := #TorsionSubgroup(E);
 
assert r eq ar; print "analytic sha:", Lr1 * tor^2 / (omega * reg * tam);
 

Modular invariants

Modular form 148225.2.a.cv

q+2q2+q3+2q4+2q62q9+2q12q134q167q174q18+O(q20) q + 2 q^{2} + q^{3} + 2 q^{4} + 2 q^{6} - 2 q^{9} + 2 q^{12} - q^{13} - 4 q^{16} - 7 q^{17} - 4 q^{18} + O(q^{20}) Copy content Toggle raw display

comment: q-expansion of modular form
 
sage: E.q_eigenform(20)
 
\\ actual modular form, use for small N
 
[mf,F] = mffromell(E)
 
Ser(mfcoefs(mf,20),q)
 
\\ or just the series
 
Ser(ellan(E,20),q)*q
 
magma: ModularForm(E);
 

For more coefficients, see the Downloads section to the right.

Modular degree: 2592000
comment: Modular degree
 
sage: E.modular_degree()
 
gp: ellmoddegree(E)
 
magma: ModularDegree(E);
 
Γ0(N) \Gamma_0(N) -optimal: no
Manin constant: 1
comment: Manin constant
 
magma: ManinConstant(E);
 

Local data at primes of bad reduction

This elliptic curve is not semistable. There are 3 primes pp of bad reduction:

pp Tamagawa number Kodaira symbol Reduction type Root number ordp(N)\mathrm{ord}_p(N) ordp(Δ)\mathrm{ord}_p(\Delta) ordp(den(j))\mathrm{ord}_p(\mathrm{den}(j))
55 22 IIIIII additive -1 2 3 0
77 22 I5I_{5}^{*} additive -1 2 11 5
1111 11 I0I_0^{*} additive -1 2 6 0

comment: Local data
 
sage: E.local_data()
 
gp: ellglobalred(E)[5]
 
magma: [LocalInformation(E,p) : p in BadPrimes(E)];
 
oscar: [(p,tamagawa_number(E,p), kodaira_symbol(E,p), reduction_type(E,p)) for p in bad_primes(E)]
 

Galois representations

The \ell-adic Galois representation has maximal image for all primes \ell except those listed in the table below.

prime \ell mod-\ell image \ell-adic image
55 5B.4.1 5.12.0.1

comment: mod p Galois image
 
sage: rho = E.galois_representation(); [rho.image_type(p) for p in rho.non_surjective()]
 
magma: [GaloisRepresentation(E,p): p in PrimesUpTo(20)];
 

gens = [[761, 10, 760, 11], [559, 0, 0, 769], [1, 0, 10, 1], [1, 10, 0, 1], [109, 550, 55, 439], [1, 220, 495, 177], [6, 13, 715, 651]]
 
GL(2,Integers(770)).subgroup(gens)
 
Gens := [[761, 10, 760, 11], [559, 0, 0, 769], [1, 0, 10, 1], [1, 10, 0, 1], [109, 550, 55, 439], [1, 220, 495, 177], [6, 13, 715, 651]];
 
sub<GL(2,Integers(770))|Gens>;
 

The image H:=ρE(Gal(Q/Q))H:=\rho_E(\Gal(\overline{\Q}/\Q)) of the adelic Galois representation has level 770=25711 770 = 2 \cdot 5 \cdot 7 \cdot 11 , index 4848, genus 11, and generators

(7611076011),(55900769),(10101),(11001),(10955055439),(1220495177),(613715651)\left(\begin{array}{rr} 761 & 10 \\ 760 & 11 \end{array}\right),\left(\begin{array}{rr} 559 & 0 \\ 0 & 769 \end{array}\right),\left(\begin{array}{rr} 1 & 0 \\ 10 & 1 \end{array}\right),\left(\begin{array}{rr} 1 & 10 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 109 & 550 \\ 55 & 439 \end{array}\right),\left(\begin{array}{rr} 1 & 220 \\ 495 & 177 \end{array}\right),\left(\begin{array}{rr} 6 & 13 \\ 715 & 651 \end{array}\right).

Input positive integer mm to see the generators of the reduction of HH to GL2(Z/mZ)\mathrm{GL}_2(\Z/m\Z):

The torsion field K:=Q(E[770])K:=\Q(E[770]) is a degree-15966720001596672000 Galois extension of Q\Q with Gal(K/Q)\Gal(K/\Q) isomorphic to the projection of HH to GL2(Z/770Z)\GL_2(\Z/770\Z).

The table below list all primes \ell for which the Serre invariants associated to the mod-\ell Galois representation are exceptional.

\ell Reduction type Serre weight Serre conductor
22 good 22 29645=572112 29645 = 5 \cdot 7^{2} \cdot 11^{2}
55 additive 1010 5929=72112 5929 = 7^{2} \cdot 11^{2}
77 additive 3232 3025=52112 3025 = 5^{2} \cdot 11^{2}
1111 additive 6262 1225=5272 1225 = 5^{2} \cdot 7^{2}

Isogenies

gp: ellisomat(E)
 

This curve has non-trivial cyclic isogenies of degree dd for d=d= 5.
Its isogeny class 148225cv consists of 2 curves linked by isogenies of degree 5.

Twists

The minimal quadratic twist of this elliptic curve is 175a2, its twist by 7777.

Growth of torsion in number fields

The number fields KK of degree less than 24 such that E(K)torsE(K)_{\rm tors} is strictly larger than E(Q)torsE(\Q)_{\rm tors} (which is trivial) are as follows:

[K:Q][K:\Q] KK E(K)torsE(K)_{\rm tors} Base change curve
22 Q(77)\Q(\sqrt{77}) Z/5Z\Z/5\Z not in database
33 3.1.140.1 Z/2Z\Z/2\Z not in database
66 6.0.686000.1 Z/2ZZ/2Z\Z/2\Z \oplus \Z/2\Z not in database
66 6.2.182613200.1 Z/10Z\Z/10\Z not in database
88 deg 8 Z/3Z\Z/3\Z not in database
1212 deg 12 Z/4Z\Z/4\Z not in database
1212 deg 12 Z/2ZZ/10Z\Z/2\Z \oplus \Z/10\Z not in database
1616 deg 16 Z/15Z\Z/15\Z not in database
2020 20.0.34117514605569656235165894031524658203125.1 Z/5Z\Z/5\Z not in database

We only show fields where the torsion growth is primitive. For fields not in the database, click on the degree shown to reveal the defining polynomial.

Iwasawa invariants

pp 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47
Reduction type ss ord add add add ord ord ss ord ord ord ord ord ord ord
λ\lambda-invariant(s) ? 2 - - - 0 0 0,0 0 0 0 0 0 0 0
μ\mu-invariant(s) ? 0 - - - 0 0 0,0 0 0 0 0 0 0 0

An entry ? indicates that the invariants have not yet been computed.

An entry - indicates that the invariants are not computed because the reduction is additive.

pp-adic regulators

All pp-adic regulators are identically 11 since the rank is 00.