Show commands:
SageMath
E = EllipticCurve("ew1")
E.isogeny_class()
Elliptic curves in class 148800ew
sage: E.isogeny_class().curves
LMFDB label | Cremona label | Weierstrass coefficients | j-invariant | Discriminant | Torsion structure | Modular degree | Faltings height | Optimality |
---|---|---|---|---|---|---|---|---|
148800.cq4 | 148800ew1 | \([0, -1, 0, 5967, -270063]\) | \(91765424/174375\) | \(-44640000000000\) | \([2]\) | \(294912\) | \(1.3038\) | \(\Gamma_0(N)\)-optimal |
148800.cq3 | 148800ew2 | \([0, -1, 0, -44033, -2820063]\) | \(9220796644/1946025\) | \(1992729600000000\) | \([2, 2]\) | \(589824\) | \(1.6503\) | |
148800.cq2 | 148800ew3 | \([0, -1, 0, -224033, 38399937]\) | \(607199886722/41558445\) | \(85111695360000000\) | \([4]\) | \(1179648\) | \(1.9969\) | |
148800.cq1 | 148800ew4 | \([0, -1, 0, -664033, -208040063]\) | \(15811147933922/1016955\) | \(2082723840000000\) | \([2]\) | \(1179648\) | \(1.9969\) |
Rank
sage: E.rank()
The elliptic curves in class 148800ew have rank \(1\).
Complex multiplication
The elliptic curves in class 148800ew do not have complex multiplication.Modular form 148800.2.a.ew
sage: E.q_eigenform(10)
Isogeny matrix
sage: E.isogeny_class().matrix()
The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the Cremona numbering.
\(\left(\begin{array}{rrrr} 1 & 2 & 4 & 4 \\ 2 & 1 & 2 & 2 \\ 4 & 2 & 1 & 4 \\ 4 & 2 & 4 & 1 \end{array}\right)\)
Isogeny graph
sage: E.isogeny_graph().plot(edge_labels=True)
The vertices are labelled with Cremona labels.