E = EllipticCurve("ew1")
E.isogeny_class()
Elliptic curves in class 148800ew
sage: E.isogeny_class().curves
LMFDB label |
Cremona label |
Weierstrass coefficients |
j-invariant |
Discriminant |
Torsion structure |
Modular degree |
Faltings height |
Optimality |
148800.cq4 |
148800ew1 |
[0,−1,0,5967,−270063] |
91765424/174375 |
−44640000000000 |
[2] |
294912 |
1.3038
|
Γ0(N)-optimal |
148800.cq3 |
148800ew2 |
[0,−1,0,−44033,−2820063] |
9220796644/1946025 |
1992729600000000 |
[2,2] |
589824 |
1.6503
|
|
148800.cq2 |
148800ew3 |
[0,−1,0,−224033,38399937] |
607199886722/41558445 |
85111695360000000 |
[4] |
1179648 |
1.9969
|
|
148800.cq1 |
148800ew4 |
[0,−1,0,−664033,−208040063] |
15811147933922/1016955 |
2082723840000000 |
[2] |
1179648 |
1.9969
|
|
The elliptic curves in class 148800ew have
rank 1.
The elliptic curves in class 148800ew do not have complex multiplication.
sage: E.isogeny_class().matrix()
The i,j entry is the smallest degree of a cyclic isogeny between the i-th and j-th curve in the isogeny class, in the Cremona numbering.
⎝⎜⎜⎛1244212242144241⎠⎟⎟⎞
sage: E.isogeny_graph().plot(edge_labels=True)
The vertices are labelled with Cremona labels.