Properties

Label 148800ew
Number of curves 44
Conductor 148800148800
CM no
Rank 11
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
E = EllipticCurve("ew1")
 
E.isogeny_class()
 

Elliptic curves in class 148800ew

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
148800.cq4 148800ew1 [0,1,0,5967,270063][0, -1, 0, 5967, -270063] 91765424/17437591765424/174375 44640000000000-44640000000000 [2][2] 294912294912 1.30381.3038 Γ0(N)\Gamma_0(N)-optimal
148800.cq3 148800ew2 [0,1,0,44033,2820063][0, -1, 0, -44033, -2820063] 9220796644/19460259220796644/1946025 19927296000000001992729600000000 [2,2][2, 2] 589824589824 1.65031.6503  
148800.cq2 148800ew3 [0,1,0,224033,38399937][0, -1, 0, -224033, 38399937] 607199886722/41558445607199886722/41558445 8511169536000000085111695360000000 [4][4] 11796481179648 1.99691.9969  
148800.cq1 148800ew4 [0,1,0,664033,208040063][0, -1, 0, -664033, -208040063] 15811147933922/101695515811147933922/1016955 20827238400000002082723840000000 [2][2] 11796481179648 1.99691.9969  

Rank

sage: E.rank()
 

The elliptic curves in class 148800ew have rank 11.

Complex multiplication

The elliptic curves in class 148800ew do not have complex multiplication.

Modular form 148800.2.a.ew

sage: E.q_eigenform(10)
 
qq3+q92q136q17+4q19+O(q20)q - q^{3} + q^{9} - 2 q^{13} - 6 q^{17} + 4 q^{19} + O(q^{20}) Copy content Toggle raw display

Isogeny matrix

sage: E.isogeny_class().matrix()
 

The i,ji,j entry is the smallest degree of a cyclic isogeny between the ii-th and jj-th curve in the isogeny class, in the Cremona numbering.

(1244212242144241)\left(\begin{array}{rrrr} 1 & 2 & 4 & 4 \\ 2 & 1 & 2 & 2 \\ 4 & 2 & 1 & 4 \\ 4 & 2 & 4 & 1 \end{array}\right)

Isogeny graph

sage: E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with Cremona labels.