Properties

Label 148800ew
Number of curves $4$
Conductor $148800$
CM no
Rank $1$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
E = EllipticCurve("ew1")
 
E.isogeny_class()
 

Elliptic curves in class 148800ew

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
148800.cq4 148800ew1 \([0, -1, 0, 5967, -270063]\) \(91765424/174375\) \(-44640000000000\) \([2]\) \(294912\) \(1.3038\) \(\Gamma_0(N)\)-optimal
148800.cq3 148800ew2 \([0, -1, 0, -44033, -2820063]\) \(9220796644/1946025\) \(1992729600000000\) \([2, 2]\) \(589824\) \(1.6503\)  
148800.cq2 148800ew3 \([0, -1, 0, -224033, 38399937]\) \(607199886722/41558445\) \(85111695360000000\) \([4]\) \(1179648\) \(1.9969\)  
148800.cq1 148800ew4 \([0, -1, 0, -664033, -208040063]\) \(15811147933922/1016955\) \(2082723840000000\) \([2]\) \(1179648\) \(1.9969\)  

Rank

sage: E.rank()
 

The elliptic curves in class 148800ew have rank \(1\).

Complex multiplication

The elliptic curves in class 148800ew do not have complex multiplication.

Modular form 148800.2.a.ew

sage: E.q_eigenform(10)
 
\(q - q^{3} + q^{9} - 2 q^{13} - 6 q^{17} + 4 q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

sage: E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the Cremona numbering.

\(\left(\begin{array}{rrrr} 1 & 2 & 4 & 4 \\ 2 & 1 & 2 & 2 \\ 4 & 2 & 1 & 4 \\ 4 & 2 & 4 & 1 \end{array}\right)\)

Isogeny graph

sage: E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with Cremona labels.