Properties

Label 14a6
Conductor 1414
Discriminant 9898
j-invariant 12878762598 \frac{128787625}{98}
CM no
Rank 00
Torsion structure Z/6Z\Z/{6}\Z

Related objects

Downloads

Learn more

Show commands: Magma / Oscar / PariGP / SageMath

Minimal Weierstrass equation

Minimal Weierstrass equation

Simplified equation

y2+xy+y=x311x+12y^2+xy+y=x^3-11x+12 Copy content Toggle raw display (homogenize, simplify)
y2z+xyz+yz2=x311xz2+12z3y^2z+xyz+yz^2=x^3-11xz^2+12z^3 Copy content Toggle raw display (dehomogenize, simplify)
y2=x313635x+612414y^2=x^3-13635x+612414 Copy content Toggle raw display (homogenize, minimize)

comment: Define the curve
 
sage: E = EllipticCurve([1, 0, 1, -11, 12])
 
gp: E = ellinit([1, 0, 1, -11, 12])
 
magma: E := EllipticCurve([1, 0, 1, -11, 12]);
 
oscar: E = elliptic_curve([1, 0, 1, -11, 12])
 
sage: E.short_weierstrass_model()
 
magma: WeierstrassModel(E);
 
oscar: short_weierstrass_model(E)
 

Mordell-Weil group structure

Z/6Z\Z/{6}\Z

magma: MordellWeilGroup(E);
 

Mordell-Weil generators

PPh^(P)\hat{h}(P)Order
(0,3)(0, 3)0066

Integral points

(0,3) \left(0, 3\right) , (0,4) \left(0, -4\right) , (2,1) \left(2, -1\right) , (2,2) \left(2, -2\right) Copy content Toggle raw display

comment: Integral points
 
sage: E.integral_points()
 
magma: IntegralPoints(E);
 

Invariants

Conductor: NN  =  14 14  = 272 \cdot 7
comment: Conductor
 
sage: E.conductor().factor()
 
gp: ellglobalred(E)[1]
 
magma: Conductor(E);
 
oscar: conductor(E)
 
Discriminant: Δ\Delta  =  9898 = 2722 \cdot 7^{2}
comment: Discriminant
 
sage: E.discriminant().factor()
 
gp: E.disc
 
magma: Discriminant(E);
 
oscar: discriminant(E)
 
j-invariant: jj  =  12878762598 \frac{128787625}{98}  = 21537210132^{-1} \cdot 5^{3} \cdot 7^{-2} \cdot 101^{3}
comment: j-invariant
 
sage: E.j_invariant().factor()
 
gp: E.j
 
magma: jInvariant(E);
 
oscar: j_invariant(E)
 
Endomorphism ring: End(E)\mathrm{End}(E) = Z\Z
Geometric endomorphism ring: End(EQ)\mathrm{End}(E_{\overline{\Q}})  =  Z\Z    (no potential complex multiplication)
sage: E.has_cm()
 
magma: HasComplexMultiplication(E);
 
Sato-Tate group: ST(E)\mathrm{ST}(E) = SU(2)\mathrm{SU}(2)
Faltings height: hFaltingsh_{\mathrm{Faltings}} ≈ 0.68551130824502523381446288209-0.68551130824502523381446288209
gp: ellheight(E)
 
magma: FaltingsHeight(E);
 
oscar: faltings_height(E)
 
Stable Faltings height: hstableh_{\mathrm{stable}} ≈ 0.68551130824502523381446288209-0.68551130824502523381446288209
magma: StableFaltingsHeight(E);
 
oscar: stable_faltings_height(E)
 
abcabc quality: QQ ≈ 0.96762776893923960.9676277689392396
Szpiro ratio: σm\sigma_{m} ≈ 7.0758884539080737.075888453908073

BSD invariants

Analytic rank: ranr_{\mathrm{an}} = 0 0
sage: E.analytic_rank()
 
gp: ellanalyticrank(E)
 
magma: AnalyticRank(E);
 
Mordell-Weil rank: rr = 0 0
comment: Rank
 
sage: E.rank()
 
gp: [lower,upper] = ellrank(E)
 
magma: Rank(E);
 
Regulator: Reg(E/Q)\mathrm{Reg}(E/\Q) = 11
comment: Regulator
 
sage: E.regulator()
 
G = E.gen \\ if available
 
matdet(ellheightmatrix(E,G))
 
magma: Regulator(E);
 
Real period: Ω\Omega ≈ 5.94402586820064970250871503025.9440258682006497025087150302
comment: Real Period
 
sage: E.period_lattice().omega()
 
gp: if(E.disc>0,2,1)*E.omega[1]
 
magma: (Discriminant(E) gt 0 select 2 else 1) * RealPeriod(E);
 
Tamagawa product: pcp\prod_{p}c_p = 2 2  = 12 1\cdot2
comment: Tamagawa numbers
 
sage: E.tamagawa_numbers()
 
gp: gr=ellglobalred(E); [[gr[4][i,1],gr[5][i][4]] | i<-[1..#gr[4][,1]]]
 
magma: TamagawaNumbers(E);
 
oscar: tamagawa_numbers(E)
 
Torsion order: #E(Q)tor\#E(\Q)_{\mathrm{tor}} = 66
comment: Torsion order
 
sage: E.torsion_order()
 
gp: elltors(E)[1]
 
magma: Order(TorsionSubgroup(E));
 
oscar: prod(torsion_structure(E)[1])
 
Special value: L(E,1) L(E,1) ≈ 0.330223659344480539028261946120.33022365934448053902826194612
comment: Special L-value
 
r = E.rank();
 
E.lseries().dokchitser().derivative(1,r)/r.factorial()
 
gp: [r,L1r] = ellanalyticrank(E); L1r/r!
 
magma: Lr1 where r,Lr1 := AnalyticRank(E: Precision:=12);
 
Analytic order of Ш: Шan{}_{\mathrm{an}}  =  11    (exact)
comment: Order of Sha
 
sage: E.sha().an_numerical()
 
magma: MordellWeilShaInformation(E);
 

BSD formula

0.330223659L(E,1)=#Ш(E/Q)ΩEReg(E/Q)pcp#E(Q)tor215.9440261.0000002620.330223659\displaystyle 0.330223659 \approx L(E,1) = \frac{\# Ш(E/\Q)\cdot \Omega_E \cdot \mathrm{Reg}(E/\Q) \cdot \prod_p c_p}{\#E(\Q)_{\rm tor}^2} \approx \frac{1 \cdot 5.944026 \cdot 1.000000 \cdot 2}{6^2} \approx 0.330223659

# self-contained SageMath code snippet for the BSD formula (checks rank, computes analytic sha)
 
E = EllipticCurve(%s); r = E.rank(); ar = E.analytic_rank(); assert r == ar;
 
Lr1 = E.lseries().dokchitser().derivative(1,r)/r.factorial(); sha = E.sha().an_numerical();
 
omega = E.period_lattice().omega(); reg = E.regulator(); tam = E.tamagawa_product(); tor = E.torsion_order();
 
assert r == ar; print("analytic sha: " + str(RR(Lr1) * tor^2 / (omega * reg * tam)))
 
/* self-contained Magma code snippet for the BSD formula (checks rank, computes analytic sha) */
 
E := EllipticCurve(%s); r := Rank(E); ar,Lr1 := AnalyticRank(E: Precision := 12); assert r eq ar;
 
sha := MordellWeilShaInformation(E); omega := RealPeriod(E) * (Discriminant(E) gt 0 select 2 else 1);
 
reg := Regulator(E); tam := &*TamagawaNumbers(E); tor := #TorsionSubgroup(E);
 
assert r eq ar; print "analytic sha:", Lr1 * tor^2 / (omega * reg * tam);
 

Modular invariants

Modular form   14.2.a.a

qq22q3+q4+2q6+q7q8+q92q124q13q14+q16+6q17q18+2q19+O(q20) q - q^{2} - 2 q^{3} + q^{4} + 2 q^{6} + q^{7} - q^{8} + q^{9} - 2 q^{12} - 4 q^{13} - q^{14} + q^{16} + 6 q^{17} - q^{18} + 2 q^{19} + O(q^{20}) Copy content Toggle raw display

comment: q-expansion of modular form
 
sage: E.q_eigenform(20)
 
\\ actual modular form, use for small N
 
[mf,F] = mffromell(E)
 
Ser(mfcoefs(mf,20),q)
 
\\ or just the series
 
Ser(ellan(E,20),q)*q
 
magma: ModularForm(E);
 

For more coefficients, see the Downloads section to the right.

Modular degree: 6
comment: Modular degree
 
sage: E.modular_degree()
 
gp: ellmoddegree(E)
 
magma: ModularDegree(E);
 
Γ0(N) \Gamma_0(N) -optimal: no
Manin constant: 3
comment: Manin constant
 
magma: ManinConstant(E);
 

Local data at primes of bad reduction

This elliptic curve is semistable. There are 2 primes pp of bad reduction:

pp Tamagawa number Kodaira symbol Reduction type Root number ordp(N)\mathrm{ord}_p(N) ordp(Δ)\mathrm{ord}_p(\Delta) ordp(den(j))\mathrm{ord}_p(\mathrm{den}(j))
22 11 I1I_{1} nonsplit multiplicative 1 1 1 1
77 22 I2I_{2} split multiplicative -1 1 2 2

comment: Local data
 
sage: E.local_data()
 
gp: ellglobalred(E)[5]
 
magma: [LocalInformation(E,p) : p in BadPrimes(E)];
 
oscar: [(p,tamagawa_number(E,p), kodaira_symbol(E,p), reduction_type(E,p)) for p in bad_primes(E)]
 

Galois representations

The \ell-adic Galois representation has maximal image for all primes \ell except those listed in the table below.

prime \ell mod-\ell image \ell-adic image
22 2B 8.6.0.6
33 3B.1.1 9.24.0.1

comment: mod p Galois image
 
sage: rho = E.galois_representation(); [rho.image_type(p) for p in rho.non_surjective()]
 
magma: [GaloisRepresentation(E,p): p in PrimesUpTo(20)];
 

gens = [[1, 36, 0, 1], [1, 0, 36, 1], [281, 36, 0, 1], [127, 36, 262, 361], [469, 36, 468, 37], [19, 36, 216, 91], [28, 27, 57, 298], [313, 36, 426, 265], [1, 18, 14, 253]]
 
GL(2,Integers(504)).subgroup(gens)
 
Gens := [[1, 36, 0, 1], [1, 0, 36, 1], [281, 36, 0, 1], [127, 36, 262, 361], [469, 36, 468, 37], [19, 36, 216, 91], [28, 27, 57, 298], [313, 36, 426, 265], [1, 18, 14, 253]];
 
sub<GL(2,Integers(504))|Gens>;
 

The image H:=ρE(Gal(Q/Q))H:=\rho_E(\Gal(\overline{\Q}/\Q)) of the adelic Galois representation has level 504=23327 504 = 2^{3} \cdot 3^{2} \cdot 7 , index 864864, genus 2121, and generators

(13601),(10361),(2813601),(12736262361),(4693646837),(193621691),(282757298),(31336426265),(11814253)\left(\begin{array}{rr} 1 & 36 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 1 & 0 \\ 36 & 1 \end{array}\right),\left(\begin{array}{rr} 281 & 36 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 127 & 36 \\ 262 & 361 \end{array}\right),\left(\begin{array}{rr} 469 & 36 \\ 468 & 37 \end{array}\right),\left(\begin{array}{rr} 19 & 36 \\ 216 & 91 \end{array}\right),\left(\begin{array}{rr} 28 & 27 \\ 57 & 298 \end{array}\right),\left(\begin{array}{rr} 313 & 36 \\ 426 & 265 \end{array}\right),\left(\begin{array}{rr} 1 & 18 \\ 14 & 253 \end{array}\right).

Input positive integer mm to see the generators of the reduction of HH to GL2(Z/mZ)\mathrm{GL}_2(\Z/m\Z):

The torsion field K:=Q(E[504])K:=\Q(E[504]) is a degree-1393459213934592 Galois extension of Q\Q with Gal(K/Q)\Gal(K/\Q) isomorphic to the projection of HH to GL2(Z/504Z)\GL_2(\Z/504\Z).

The table below list all primes \ell for which the Serre invariants associated to the mod-\ell Galois representation are exceptional.

\ell Reduction type Serre weight Serre conductor
22 nonsplit multiplicative 44 1 1
77 split multiplicative 88 2 2

Isogenies

gp: ellisomat(E)
 

This curve has non-trivial cyclic isogenies of degree dd for d=d= 2, 3, 6, 9 and 18.
Its isogeny class 14a consists of 6 curves linked by isogenies of degrees dividing 18.

Twists

This elliptic curve is its own minimal quadratic twist.

Growth of torsion in number fields

The number fields KK of degree less than 24 such that E(K)torsE(K)_{\rm tors} is strictly larger than E(Q)torsE(\Q)_{\rm tors} Z/6Z\cong \Z/{6}\Z are as follows:

[K:Q][K:\Q] KK E(K)torsE(K)_{\rm tors} Base change curve
22 Q(2)\Q(\sqrt{2}) Z/2ZZ/6Z\Z/2\Z \oplus \Z/6\Z 2.2.8.1-98.1-a8
33 Q(ζ7)+\Q(\zeta_{7})^+ Z/18Z\Z/18\Z 3.3.49.1-56.1-a4
44 4.0.1568.1 Z/12Z\Z/12\Z not in database
66 6.0.1037232.1 Z/3ZZ/6Z\Z/3\Z \oplus \Z/6\Z not in database
66 6.0.21168.1 Z/18Z\Z/18\Z not in database
66 6.6.1229312.1 Z/2ZZ/18Z\Z/2\Z \oplus \Z/18\Z not in database
88 8.4.205520896.2 Z/2ZZ/12Z\Z/2\Z \oplus \Z/12\Z not in database
88 8.0.157351936.3 Z/2ZZ/12Z\Z/2\Z \oplus \Z/12\Z not in database
1212 deg 12 Z/6ZZ/6Z\Z/6\Z \oplus \Z/6\Z not in database
1212 12.0.7341411926016.1 Z/2ZZ/18Z\Z/2\Z \oplus \Z/18\Z not in database
1212 12.0.9256148959232.2 Z/36Z\Z/36\Z not in database
1616 deg 16 Z/24Z\Z/24\Z not in database
1818 18.0.1115906277282951168.1 Z/3ZZ/18Z\Z/3\Z \oplus \Z/18\Z not in database

We only show fields where the torsion growth is primitive. For fields not in the database, click on the degree shown to reveal the defining polynomial.

Iwasawa invariants

pp 2 3 7
Reduction type nonsplit ord split
λ\lambda-invariant(s) 0 0 1
μ\mu-invariant(s) 0 0 0

All Iwasawa λ\lambda and μ\mu-invariants for primes p5p\ge 5 of good reduction are zero.

pp-adic regulators

All pp-adic regulators are identically 11 since the rank is 00.