Show commands:
SageMath
E = EllipticCurve("a1")
E.isogeny_class()
Elliptic curves in class 15.a
sage: E.isogeny_class().curves
LMFDB label | Cremona label | Weierstrass coefficients | j-invariant | Discriminant | Torsion structure | Modular degree | Faltings height | Optimality |
---|---|---|---|---|---|---|---|---|
15.a1 | 15a5 | \([1, 1, 1, -2160, -39540]\) | \(1114544804970241/405\) | \(405\) | \([2]\) | \(4\) | \(0.29087\) | |
15.a2 | 15a2 | \([1, 1, 1, -135, -660]\) | \(272223782641/164025\) | \(164025\) | \([2, 2]\) | \(2\) | \(-0.055704\) | |
15.a3 | 15a6 | \([1, 1, 1, -110, -880]\) | \(-147281603041/215233605\) | \(-215233605\) | \([2]\) | \(4\) | \(0.29087\) | |
15.a4 | 15a7 | \([1, 1, 1, -80, 242]\) | \(56667352321/15\) | \(15\) | \([4]\) | \(4\) | \(-0.40228\) | |
15.a5 | 15a1 | \([1, 1, 1, -10, -10]\) | \(111284641/50625\) | \(50625\) | \([2, 4]\) | \(1\) | \(-0.40228\) | \(\Gamma_0(N)\)-optimal |
15.a6 | 15a3 | \([1, 1, 1, -5, 2]\) | \(13997521/225\) | \(225\) | \([2, 4]\) | \(2\) | \(-0.74885\) | |
15.a7 | 15a8 | \([1, 1, 1, 0, 0]\) | \(-1/15\) | \(-15\) | \([4]\) | \(4\) | \(-1.0954\) | |
15.a8 | 15a4 | \([1, 1, 1, 35, -28]\) | \(4733169839/3515625\) | \(-3515625\) | \([8]\) | \(2\) | \(-0.055704\) |
Rank
sage: E.rank()
The elliptic curves in class 15.a have rank \(0\).
Complex multiplication
The elliptic curves in class 15.a do not have complex multiplication.Modular form 15.2.a.a
sage: E.q_eigenform(10)
Isogeny matrix
sage: E.isogeny_class().matrix()
The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.
\(\left(\begin{array}{rrrrrrrr} 1 & 2 & 4 & 16 & 4 & 8 & 16 & 8 \\ 2 & 1 & 2 & 8 & 2 & 4 & 8 & 4 \\ 4 & 2 & 1 & 16 & 4 & 8 & 16 & 8 \\ 16 & 8 & 16 & 1 & 4 & 2 & 4 & 8 \\ 4 & 2 & 4 & 4 & 1 & 2 & 4 & 2 \\ 8 & 4 & 8 & 2 & 2 & 1 & 2 & 4 \\ 16 & 8 & 16 & 4 & 4 & 2 & 1 & 8 \\ 8 & 4 & 8 & 8 & 2 & 4 & 8 & 1 \end{array}\right)\)
Isogeny graph
sage: E.isogeny_graph().plot(edge_labels=True)
The vertices are labelled with LMFDB labels.