Properties

Label 15.a
Number of curves 88
Conductor 1515
CM no
Rank 00
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("a1") E.isogeny_class()
 

Elliptic curves in class 15.a

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
15.a1 15a5 [1,1,1,2160,39540][1, 1, 1, -2160, -39540] 1114544804970241/4051114544804970241/405 405405 [2][2] 44 0.290870.29087  
15.a2 15a2 [1,1,1,135,660][1, 1, 1, -135, -660] 272223782641/164025272223782641/164025 164025164025 [2,2][2, 2] 22 0.055704-0.055704  
15.a3 15a6 [1,1,1,110,880][1, 1, 1, -110, -880] 147281603041/215233605-147281603041/215233605 215233605-215233605 [2][2] 44 0.290870.29087  
15.a4 15a7 [1,1,1,80,242][1, 1, 1, -80, 242] 56667352321/1556667352321/15 1515 [4][4] 44 0.40228-0.40228  
15.a5 15a1 [1,1,1,10,10][1, 1, 1, -10, -10] 111284641/50625111284641/50625 5062550625 [2,4][2, 4] 11 0.40228-0.40228 Γ0(N)\Gamma_0(N)-optimal
15.a6 15a3 [1,1,1,5,2][1, 1, 1, -5, 2] 13997521/22513997521/225 225225 [2,4][2, 4] 22 0.74885-0.74885  
15.a7 15a8 [1,1,1,0,0][1, 1, 1, 0, 0] 1/15-1/15 15-15 [4][4] 44 1.0954-1.0954  
15.a8 15a4 [1,1,1,35,28][1, 1, 1, 35, -28] 4733169839/35156254733169839/3515625 3515625-3515625 [8][8] 22 0.055704-0.055704  

Rank

Copy content sage:E.rank()
 

The elliptic curves in class 15.a have rank 00.

L-function data

 
Bad L-factors:
Prime L-Factor
331+T1 + T
551T1 - T
 
Good L-factors:
Prime L-Factor Isogeny Class over Fp\mathbb{F}_p
22 1+T+2T2 1 + T + 2 T^{2} 1.2.b
77 1+7T2 1 + 7 T^{2} 1.7.a
1111 1+4T+11T2 1 + 4 T + 11 T^{2} 1.11.e
1313 1+2T+13T2 1 + 2 T + 13 T^{2} 1.13.c
1717 12T+17T2 1 - 2 T + 17 T^{2} 1.17.ac
1919 14T+19T2 1 - 4 T + 19 T^{2} 1.19.ae
2323 1+23T2 1 + 23 T^{2} 1.23.a
2929 1+2T+29T2 1 + 2 T + 29 T^{2} 1.29.c
\cdots\cdots\cdots
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 15.a do not have complex multiplication.

Modular form 15.2.a.a

Copy content sage:E.q_eigenform(10)
 
qq2q3q4+q5+q6+3q8+q9q104q11+q122q13q15q16+2q17q18+4q19+O(q20)q - q^{2} - q^{3} - q^{4} + q^{5} + q^{6} + 3 q^{8} + q^{9} - q^{10} - 4 q^{11} + q^{12} - 2 q^{13} - q^{15} - q^{16} + 2 q^{17} - q^{18} + 4 q^{19} + O(q^{20}) Copy content Toggle raw display

Isogeny matrix

Copy content sage:E.isogeny_class().matrix()
 

The i,ji,j entry is the smallest degree of a cyclic isogeny between the ii-th and jj-th curve in the isogeny class, in the LMFDB numbering.

(124164816821282484421164816816816142484244124284822124168164421884882481)\left(\begin{array}{rrrrrrrr} 1 & 2 & 4 & 16 & 4 & 8 & 16 & 8 \\ 2 & 1 & 2 & 8 & 2 & 4 & 8 & 4 \\ 4 & 2 & 1 & 16 & 4 & 8 & 16 & 8 \\ 16 & 8 & 16 & 1 & 4 & 2 & 4 & 8 \\ 4 & 2 & 4 & 4 & 1 & 2 & 4 & 2 \\ 8 & 4 & 8 & 2 & 2 & 1 & 2 & 4 \\ 16 & 8 & 16 & 4 & 4 & 2 & 1 & 8 \\ 8 & 4 & 8 & 8 & 2 & 4 & 8 & 1 \end{array}\right)

Isogeny graph

Copy content sage:E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.