Properties

Label 150.a
Number of curves 44
Conductor 150150
CM no
Rank 00
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
E = EllipticCurve("a1")
 
E.isogeny_class()
 

Elliptic curves in class 150.a

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
150.a1 150b4 [1,1,0,20700,1134000][1, 1, 0, -20700, 1134000] 502270291349/1889568502270291349/1889568 36905625000003690562500000 [2][2] 400400 1.27071.2707  
150.a2 150b2 [1,1,0,1325,19125][1, 1, 0, -1325, -19125] 131872229/18131872229/18 3515625035156250 [2][2] 8080 0.466020.46602  
150.a3 150b3 [1,1,0,700,34000][1, 1, 0, -700, 34000] 19465109/248832-19465109/248832 486000000000-486000000000 [2][2] 200200 0.924170.92417  
150.a4 150b1 [1,1,0,75,375][1, 1, 0, -75, -375] 24389/12-24389/12 23437500-23437500 [2][2] 4040 0.119450.11945 Γ0(N)\Gamma_0(N)-optimal

Rank

sage: E.rank()
 

The elliptic curves in class 150.a have rank 00.

Complex multiplication

The elliptic curves in class 150.a do not have complex multiplication.

Modular form 150.2.a.a

sage: E.q_eigenform(10)
 
qq2q3+q4+q6+2q7q8+q9+2q11q12+6q132q14+q16+2q17q18+O(q20)q - q^{2} - q^{3} + q^{4} + q^{6} + 2 q^{7} - q^{8} + q^{9} + 2 q^{11} - q^{12} + 6 q^{13} - 2 q^{14} + q^{16} + 2 q^{17} - q^{18} + O(q^{20}) Copy content Toggle raw display

Isogeny matrix

sage: E.isogeny_class().matrix()
 

The i,ji,j entry is the smallest degree of a cyclic isogeny between the ii-th and jj-th curve in the isogeny class, in the LMFDB numbering.

(15210511022101510251)\left(\begin{array}{rrrr} 1 & 5 & 2 & 10 \\ 5 & 1 & 10 & 2 \\ 2 & 10 & 1 & 5 \\ 10 & 2 & 5 & 1 \end{array}\right)

Isogeny graph

sage: E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.