Show commands:
SageMath
E = EllipticCurve("a1")
E.isogeny_class()
Elliptic curves in class 150.a
sage: E.isogeny_class().curves
LMFDB label | Cremona label | Weierstrass coefficients | j-invariant | Discriminant | Torsion structure | Modular degree | Faltings height | Optimality |
---|---|---|---|---|---|---|---|---|
150.a1 | 150b4 | \([1, 1, 0, -20700, 1134000]\) | \(502270291349/1889568\) | \(3690562500000\) | \([2]\) | \(400\) | \(1.2707\) | |
150.a2 | 150b2 | \([1, 1, 0, -1325, -19125]\) | \(131872229/18\) | \(35156250\) | \([2]\) | \(80\) | \(0.46602\) | |
150.a3 | 150b3 | \([1, 1, 0, -700, 34000]\) | \(-19465109/248832\) | \(-486000000000\) | \([2]\) | \(200\) | \(0.92417\) | |
150.a4 | 150b1 | \([1, 1, 0, -75, -375]\) | \(-24389/12\) | \(-23437500\) | \([2]\) | \(40\) | \(0.11945\) | \(\Gamma_0(N)\)-optimal |
Rank
sage: E.rank()
The elliptic curves in class 150.a have rank \(0\).
Complex multiplication
The elliptic curves in class 150.a do not have complex multiplication.Modular form 150.2.a.a
sage: E.q_eigenform(10)
Isogeny matrix
sage: E.isogeny_class().matrix()
The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.
\(\left(\begin{array}{rrrr} 1 & 5 & 2 & 10 \\ 5 & 1 & 10 & 2 \\ 2 & 10 & 1 & 5 \\ 10 & 2 & 5 & 1 \end{array}\right)\)
Isogeny graph
sage: E.isogeny_graph().plot(edge_labels=True)
The vertices are labelled with LMFDB labels.