sage:E = EllipticCurve("a1")
E.isogeny_class()
Elliptic curves in class 150a
sage:E.isogeny_class().curves
LMFDB label |
Cremona label |
Weierstrass coefficients |
j-invariant |
Discriminant |
Torsion structure |
Modular degree |
Faltings height |
Optimality |
150.c4 |
150a1 |
[1,0,0,−3,−3] |
−24389/12 |
−1500 |
[2] |
8 |
−0.68527
|
Γ0(N)-optimal |
150.c2 |
150a2 |
[1,0,0,−53,−153] |
131872229/18 |
2250 |
[2] |
16 |
−0.33870
|
|
150.c3 |
150a3 |
[1,0,0,−28,272] |
−19465109/248832 |
−31104000 |
[10] |
40 |
0.11945
|
|
150.c1 |
150a4 |
[1,0,0,−828,9072] |
502270291349/1889568 |
236196000 |
[10] |
80 |
0.46602
|
|
sage:E.rank()
The elliptic curves in class 150a have
rank 0.
|
Bad L-factors: |
Prime |
L-Factor |
2 | 1+T |
3 | 1+T |
5 | 1 |
|
|
Good L-factors: |
Prime |
L-Factor |
Isogeny Class over Fp |
7 |
1−2T+7T2 |
1.7.ac
|
11 |
1−2T+11T2 |
1.11.ac
|
13 |
1−6T+13T2 |
1.13.ag
|
17 |
1−2T+17T2 |
1.17.ac
|
19 |
1+19T2 |
1.19.a
|
23 |
1+4T+23T2 |
1.23.e
|
29 |
1+29T2 |
1.29.a
|
⋯ | ⋯ | ⋯ |
|
|
See L-function page for more information |
The elliptic curves in class 150a do not have complex multiplication.
sage:E.q_eigenform(10)
sage:E.isogeny_class().matrix()
The i,j entry is the smallest degree of a cyclic isogeny between the i-th and j-th curve in the isogeny class, in the Cremona numbering.
⎝⎜⎜⎛12510211055101210521⎠⎟⎟⎞
sage:E.isogeny_graph().plot(edge_labels=True)
The vertices are labelled with Cremona labels.