Properties

Label 150a
Number of curves 44
Conductor 150150
CM no
Rank 00
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("a1") E.isogeny_class()
 

Elliptic curves in class 150a

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
150.c4 150a1 [1,0,0,3,3][1, 0, 0, -3, -3] 24389/12-24389/12 1500-1500 [2][2] 88 0.68527-0.68527 Γ0(N)\Gamma_0(N)-optimal
150.c2 150a2 [1,0,0,53,153][1, 0, 0, -53, -153] 131872229/18131872229/18 22502250 [2][2] 1616 0.33870-0.33870  
150.c3 150a3 [1,0,0,28,272][1, 0, 0, -28, 272] 19465109/248832-19465109/248832 31104000-31104000 [10][10] 4040 0.119450.11945  
150.c1 150a4 [1,0,0,828,9072][1, 0, 0, -828, 9072] 502270291349/1889568502270291349/1889568 236196000236196000 [10][10] 8080 0.466020.46602  

Rank

Copy content sage:E.rank()
 

The elliptic curves in class 150a have rank 00.

L-function data

 
Bad L-factors:
Prime L-Factor
221+T1 + T
331+T1 + T
5511
 
Good L-factors:
Prime L-Factor Isogeny Class over Fp\mathbb{F}_p
77 12T+7T2 1 - 2 T + 7 T^{2} 1.7.ac
1111 12T+11T2 1 - 2 T + 11 T^{2} 1.11.ac
1313 16T+13T2 1 - 6 T + 13 T^{2} 1.13.ag
1717 12T+17T2 1 - 2 T + 17 T^{2} 1.17.ac
1919 1+19T2 1 + 19 T^{2} 1.19.a
2323 1+4T+23T2 1 + 4 T + 23 T^{2} 1.23.e
2929 1+29T2 1 + 29 T^{2} 1.29.a
\cdots\cdots\cdots
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 150a do not have complex multiplication.

Modular form 150.2.a.a

Copy content sage:E.q_eigenform(10)
 
q+q2+q3+q4+q62q7+q8+q9+2q11+q126q132q14+q162q17+q18+O(q20)q + q^{2} + q^{3} + q^{4} + q^{6} - 2 q^{7} + q^{8} + q^{9} + 2 q^{11} + q^{12} - 6 q^{13} - 2 q^{14} + q^{16} - 2 q^{17} + q^{18} + O(q^{20}) Copy content Toggle raw display

Isogeny matrix

Copy content sage:E.isogeny_class().matrix()
 

The i,ji,j entry is the smallest degree of a cyclic isogeny between the ii-th and jj-th curve in the isogeny class, in the Cremona numbering.

(12510211055101210521)\left(\begin{array}{rrrr} 1 & 2 & 5 & 10 \\ 2 & 1 & 10 & 5 \\ 5 & 10 & 1 & 2 \\ 10 & 5 & 2 & 1 \end{array}\right)

Isogeny graph

Copy content sage:E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with Cremona labels.