Properties

Label 150b1
Conductor 150150
Discriminant 23437500-23437500
j-invariant 2438912 -\frac{24389}{12}
CM no
Rank 00
Torsion structure Z/2Z\Z/{2}\Z

Related objects

Downloads

Learn more

Show commands: Magma / Oscar / PariGP / SageMath

Minimal Weierstrass equation

Minimal Weierstrass equation

Simplified equation

y2+xy=x3+x275x375y^2+xy=x^3+x^2-75x-375 Copy content Toggle raw display (homogenize, simplify)
y2z+xyz=x3+x2z75xz2375z3y^2z+xyz=x^3+x^2z-75xz^2-375z^3 Copy content Toggle raw display (dehomogenize, simplify)
y2=x397875x16031250y^2=x^3-97875x-16031250 Copy content Toggle raw display (homogenize, minimize)

comment: Define the curve
 
sage: E = EllipticCurve([1, 1, 0, -75, -375])
 
gp: E = ellinit([1, 1, 0, -75, -375])
 
magma: E := EllipticCurve([1, 1, 0, -75, -375]);
 
oscar: E = elliptic_curve([1, 1, 0, -75, -375])
 
sage: E.short_weierstrass_model()
 
magma: WeierstrassModel(E);
 
oscar: short_weierstrass_model(E)
 

Mordell-Weil group structure

Z/2Z\Z/{2}\Z

magma: MordellWeilGroup(E);
 

Mordell-Weil generators

PPh^(P)\hat{h}(P)Order
(10,5)(10, -5)0022

Integral points

(10,5) \left(10, -5\right) Copy content Toggle raw display

comment: Integral points
 
sage: E.integral_points()
 
magma: IntegralPoints(E);
 

Invariants

Conductor: NN  =  150 150  = 23522 \cdot 3 \cdot 5^{2}
comment: Conductor
 
sage: E.conductor().factor()
 
gp: ellglobalred(E)[1]
 
magma: Conductor(E);
 
oscar: conductor(E)
 
Discriminant: Δ\Delta  =  23437500-23437500 = 122359-1 \cdot 2^{2} \cdot 3 \cdot 5^{9}
comment: Discriminant
 
sage: E.discriminant().factor()
 
gp: E.disc
 
magma: Discriminant(E);
 
oscar: discriminant(E)
 
j-invariant: jj  =  2438912 -\frac{24389}{12}  = 12231293-1 \cdot 2^{-2} \cdot 3^{-1} \cdot 29^{3}
comment: j-invariant
 
sage: E.j_invariant().factor()
 
gp: E.j
 
magma: jInvariant(E);
 
oscar: j_invariant(E)
 
Endomorphism ring: End(E)\mathrm{End}(E) = Z\Z
Geometric endomorphism ring: End(EQ)\mathrm{End}(E_{\overline{\Q}})  =  Z\Z    (no potential complex multiplication)
sage: E.has_cm()
 
magma: HasComplexMultiplication(E);
 
Sato-Tate group: ST(E)\mathrm{ST}(E) = SU(2)\mathrm{SU}(2)
Faltings height: hFaltingsh_{\mathrm{Faltings}} ≈ 0.119447773602919336882720670760.11944777360291933688272067076
gp: ellheight(E)
 
magma: FaltingsHeight(E);
 
oscar: faltings_height(E)
 
Stable Faltings height: hstableh_{\mathrm{stable}} ≈ 1.0876306607226559440678488292-1.0876306607226559440678488292
magma: StableFaltingsHeight(E);
 
oscar: stable_faltings_height(E)
 
abcabc quality: QQ ≈ 1.10339406114353181.1033940611435318
Szpiro ratio: σm\sigma_{m} ≈ 5.0297280540925255.029728054092525

BSD invariants

Analytic rank: ranr_{\mathrm{an}} = 0 0
sage: E.analytic_rank()
 
gp: ellanalyticrank(E)
 
magma: AnalyticRank(E);
 
Mordell-Weil rank: rr = 0 0
comment: Rank
 
sage: E.rank()
 
gp: [lower,upper] = ellrank(E)
 
magma: Rank(E);
 
Regulator: Reg(E/Q)\mathrm{Reg}(E/\Q) = 11
comment: Regulator
 
sage: E.regulator()
 
G = E.gen \\ if available
 
matdet(ellheightmatrix(E,G))
 
magma: Regulator(E);
 
Real period: Ω\Omega ≈ 0.791236789782514664662087946690.79123678978251466466208794669
comment: Real Period
 
sage: E.period_lattice().omega()
 
gp: if(E.disc>0,2,1)*E.omega[1]
 
magma: (Discriminant(E) gt 0 select 2 else 1) * RealPeriod(E);
 
Tamagawa product: pcp\prod_{p}c_p = 4 4  = 212 2\cdot1\cdot2
comment: Tamagawa numbers
 
sage: E.tamagawa_numbers()
 
gp: gr=ellglobalred(E); [[gr[4][i,1],gr[5][i][4]] | i<-[1..#gr[4][,1]]]
 
magma: TamagawaNumbers(E);
 
oscar: tamagawa_numbers(E)
 
Torsion order: #E(Q)tor\#E(\Q)_{\mathrm{tor}} = 22
comment: Torsion order
 
sage: E.torsion_order()
 
gp: elltors(E)[1]
 
magma: Order(TorsionSubgroup(E));
 
oscar: prod(torsion_structure(E)[1])
 
Special value: L(E,1) L(E,1) ≈ 0.791236789782514664662087946690.79123678978251466466208794669
comment: Special L-value
 
r = E.rank();
 
E.lseries().dokchitser().derivative(1,r)/r.factorial()
 
gp: [r,L1r] = ellanalyticrank(E); L1r/r!
 
magma: Lr1 where r,Lr1 := AnalyticRank(E: Precision:=12);
 
Analytic order of Ш: Шan{}_{\mathrm{an}}  =  11    (exact)
comment: Order of Sha
 
sage: E.sha().an_numerical()
 
magma: MordellWeilShaInformation(E);
 

BSD formula

0.791236790L(E,1)=#Ш(E/Q)ΩEReg(E/Q)pcp#E(Q)tor210.7912371.0000004220.791236790\displaystyle 0.791236790 \approx L(E,1) = \frac{\# Ш(E/\Q)\cdot \Omega_E \cdot \mathrm{Reg}(E/\Q) \cdot \prod_p c_p}{\#E(\Q)_{\rm tor}^2} \approx \frac{1 \cdot 0.791237 \cdot 1.000000 \cdot 4}{2^2} \approx 0.791236790

# self-contained SageMath code snippet for the BSD formula (checks rank, computes analytic sha)
 
E = EllipticCurve(%s); r = E.rank(); ar = E.analytic_rank(); assert r == ar;
 
Lr1 = E.lseries().dokchitser().derivative(1,r)/r.factorial(); sha = E.sha().an_numerical();
 
omega = E.period_lattice().omega(); reg = E.regulator(); tam = E.tamagawa_product(); tor = E.torsion_order();
 
assert r == ar; print("analytic sha: " + str(RR(Lr1) * tor^2 / (omega * reg * tam)))
 
/* self-contained Magma code snippet for the BSD formula (checks rank, computes analytic sha) */
 
E := EllipticCurve(%s); r := Rank(E); ar,Lr1 := AnalyticRank(E: Precision := 12); assert r eq ar;
 
sha := MordellWeilShaInformation(E); omega := RealPeriod(E) * (Discriminant(E) gt 0 select 2 else 1);
 
reg := Regulator(E); tam := &*TamagawaNumbers(E); tor := #TorsionSubgroup(E);
 
assert r eq ar; print "analytic sha:", Lr1 * tor^2 / (omega * reg * tam);
 

Modular invariants

Modular form   150.2.a.a

qq2q3+q4+q6+2q7q8+q9+2q11q12+6q132q14+q16+2q17q18+O(q20) q - q^{2} - q^{3} + q^{4} + q^{6} + 2 q^{7} - q^{8} + q^{9} + 2 q^{11} - q^{12} + 6 q^{13} - 2 q^{14} + q^{16} + 2 q^{17} - q^{18} + O(q^{20}) Copy content Toggle raw display

comment: q-expansion of modular form
 
sage: E.q_eigenform(20)
 
\\ actual modular form, use for small N
 
[mf,F] = mffromell(E)
 
Ser(mfcoefs(mf,20),q)
 
\\ or just the series
 
Ser(ellan(E,20),q)*q
 
magma: ModularForm(E);
 

For more coefficients, see the Downloads section to the right.

Modular degree: 40
comment: Modular degree
 
sage: E.modular_degree()
 
gp: ellmoddegree(E)
 
magma: ModularDegree(E);
 
Γ0(N) \Gamma_0(N) -optimal: yes
Manin constant: 1
comment: Manin constant
 
magma: ManinConstant(E);
 

Local data at primes of bad reduction

This elliptic curve is not semistable. There are 3 primes pp of bad reduction:

pp Tamagawa number Kodaira symbol Reduction type Root number ordp(N)\mathrm{ord}_p(N) ordp(Δ)\mathrm{ord}_p(\Delta) ordp(den(j))\mathrm{ord}_p(\mathrm{den}(j))
22 22 I2I_{2} nonsplit multiplicative 1 1 2 2
33 11 I1I_{1} nonsplit multiplicative 1 1 1 1
55 22 IIIIII^{*} additive -1 2 9 0

comment: Local data
 
sage: E.local_data()
 
gp: ellglobalred(E)[5]
 
magma: [LocalInformation(E,p) : p in BadPrimes(E)];
 
oscar: [(p,tamagawa_number(E,p), kodaira_symbol(E,p), reduction_type(E,p)) for p in bad_primes(E)]
 

Galois representations

The \ell-adic Galois representation has maximal image for all primes \ell except those listed in the table below.

prime \ell mod-\ell image \ell-adic image
22 2B 2.3.0.1
55 5B.1.3 5.24.0.4

comment: mod p Galois image
 
sage: rho = E.galois_representation(); [rho.image_type(p) for p in rho.non_surjective()]
 
magma: [GaloisRepresentation(E,p): p in PrimesUpTo(20)];
 

gens = [[61, 20, 10, 81], [11, 16, 0, 11], [101, 20, 100, 21], [18, 115, 65, 74], [1, 20, 0, 1], [31, 20, 70, 81], [56, 5, 75, 106], [1, 0, 20, 1], [1, 10, 10, 101]]
 
GL(2,Integers(120)).subgroup(gens)
 
Gens := [[61, 20, 10, 81], [11, 16, 0, 11], [101, 20, 100, 21], [18, 115, 65, 74], [1, 20, 0, 1], [31, 20, 70, 81], [56, 5, 75, 106], [1, 0, 20, 1], [1, 10, 10, 101]];
 
sub<GL(2,Integers(120))|Gens>;
 

The image H:=ρE(Gal(Q/Q))H:=\rho_E(\Gal(\overline{\Q}/\Q)) of the adelic Galois representation has level 120=2335 120 = 2^{3} \cdot 3 \cdot 5 , index 288288, genus 55, and generators

(61201081),(1116011),(1012010021),(181156574),(12001),(31207081),(56575106),(10201),(11010101)\left(\begin{array}{rr} 61 & 20 \\ 10 & 81 \end{array}\right),\left(\begin{array}{rr} 11 & 16 \\ 0 & 11 \end{array}\right),\left(\begin{array}{rr} 101 & 20 \\ 100 & 21 \end{array}\right),\left(\begin{array}{rr} 18 & 115 \\ 65 & 74 \end{array}\right),\left(\begin{array}{rr} 1 & 20 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 31 & 20 \\ 70 & 81 \end{array}\right),\left(\begin{array}{rr} 56 & 5 \\ 75 & 106 \end{array}\right),\left(\begin{array}{rr} 1 & 0 \\ 20 & 1 \end{array}\right),\left(\begin{array}{rr} 1 & 10 \\ 10 & 101 \end{array}\right).

Input positive integer mm to see the generators of the reduction of HH to GL2(Z/mZ)\mathrm{GL}_2(\Z/m\Z):

The torsion field K:=Q(E[120])K:=\Q(E[120]) is a degree-122880122880 Galois extension of Q\Q with Gal(K/Q)\Gal(K/\Q) isomorphic to the projection of HH to GL2(Z/120Z)\GL_2(\Z/120\Z).

The table below list all primes \ell for which the Serre invariants associated to the mod-\ell Galois representation are exceptional.

\ell Reduction type Serre weight Serre conductor
22 nonsplit multiplicative 44 15=35 15 = 3 \cdot 5
33 nonsplit multiplicative 44 50=252 50 = 2 \cdot 5^{2}
55 additive 1414 6=23 6 = 2 \cdot 3

Isogenies

gp: ellisomat(E)
 

This curve has non-trivial cyclic isogenies of degree dd for d=d= 2, 5 and 10.
Its isogeny class 150b consists of 4 curves linked by isogenies of degrees dividing 10.

Twists

The minimal quadratic twist of this elliptic curve is 150a1, its twist by 55.

Growth of torsion in number fields

The number fields KK of degree less than 24 such that E(K)torsE(K)_{\rm tors} is strictly larger than E(Q)torsE(\Q)_{\rm tors} Z/2Z\cong \Z/{2}\Z are as follows:

[K:Q][K:\Q] KK E(K)torsE(K)_{\rm tors} Base change curve
22 Q(15)\Q(\sqrt{-15}) Z/2ZZ/2Z\Z/2\Z \oplus \Z/2\Z not in database
44 4.2.24000.1 Z/4Z\Z/4\Z not in database
44 Q(ζ5)\Q(\zeta_{5}) Z/10Z\Z/10\Z not in database
88 8.0.11664000000.4 Z/2ZZ/4Z\Z/2\Z \oplus \Z/4\Z not in database
88 8.0.5184000000.12 Z/2ZZ/4Z\Z/2\Z \oplus \Z/4\Z not in database
88 8.2.44286750000.1 Z/6Z\Z/6\Z not in database
88 Q(ζ15)\Q(\zeta_{15}) Z/2ZZ/10Z\Z/2\Z \oplus \Z/10\Z not in database
1010 10.2.131220000000.2 Z/10Z\Z/10\Z not in database
1616 deg 16 Z/8Z\Z/8\Z not in database
1616 deg 16 Z/2ZZ/6Z\Z/2\Z \oplus \Z/6\Z not in database
1616 16.0.331776000000000000.1 Z/20Z\Z/20\Z not in database
2020 20.0.86093442000000000000000.1 Z/5ZZ/10Z\Z/5\Z \oplus \Z/10\Z not in database
2020 20.0.154968195600000000000000.1 Z/2ZZ/10Z\Z/2\Z \oplus \Z/10\Z not in database

We only show fields where the torsion growth is primitive. For fields not in the database, click on the degree shown to reveal the defining polynomial.

Iwasawa invariants

pp 2 3 5
Reduction type nonsplit nonsplit add
λ\lambda-invariant(s) 1 0 -
μ\mu-invariant(s) 0 0 -

All Iwasawa λ\lambda and μ\mu-invariants for primes p7p\ge 7 of good reduction are zero.

An entry - indicates that the invariants are not computed because the reduction is additive.

pp-adic regulators

All pp-adic regulators are identically 11 since the rank is 00.