Show commands:
SageMath
E = EllipticCurve("c1")
E.isogeny_class()
Elliptic curves in class 150c
sage: E.isogeny_class().curves
LMFDB label | Cremona label | Weierstrass coefficients | j-invariant | Discriminant | Torsion structure | Modular degree | Faltings height | Optimality |
---|---|---|---|---|---|---|---|---|
150.b8 | 150c1 | \([1, 1, 1, 37, 281]\) | \(357911/2160\) | \(-33750000\) | \([4]\) | \(48\) | \(0.12643\) | \(\Gamma_0(N)\)-optimal |
150.b6 | 150c2 | \([1, 1, 1, -463, 3281]\) | \(702595369/72900\) | \(1139062500\) | \([2, 2]\) | \(96\) | \(0.47301\) | |
150.b7 | 150c3 | \([1, 1, 1, -338, -7969]\) | \(-273359449/1536000\) | \(-24000000000\) | \([4]\) | \(144\) | \(0.67574\) | |
150.b5 | 150c4 | \([1, 1, 1, -1713, -24219]\) | \(35578826569/5314410\) | \(83037656250\) | \([2]\) | \(192\) | \(0.81958\) | |
150.b4 | 150c5 | \([1, 1, 1, -7213, 232781]\) | \(2656166199049/33750\) | \(527343750\) | \([2]\) | \(192\) | \(0.81958\) | |
150.b3 | 150c6 | \([1, 1, 1, -8338, -295969]\) | \(4102915888729/9000000\) | \(140625000000\) | \([2, 2]\) | \(288\) | \(1.0223\) | |
150.b1 | 150c7 | \([1, 1, 1, -133338, -18795969]\) | \(16778985534208729/81000\) | \(1265625000\) | \([2]\) | \(576\) | \(1.3689\) | |
150.b2 | 150c8 | \([1, 1, 1, -11338, -67969]\) | \(10316097499609/5859375000\) | \(91552734375000\) | \([2]\) | \(576\) | \(1.3689\) |
Rank
sage: E.rank()
The elliptic curves in class 150c have rank \(0\).
Complex multiplication
The elliptic curves in class 150c do not have complex multiplication.Modular form 150.2.a.c
sage: E.q_eigenform(10)
Isogeny matrix
sage: E.isogeny_class().matrix()
The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the Cremona numbering.
\(\left(\begin{array}{rrrrrrrr} 1 & 2 & 3 & 4 & 4 & 6 & 12 & 12 \\ 2 & 1 & 6 & 2 & 2 & 3 & 6 & 6 \\ 3 & 6 & 1 & 12 & 12 & 2 & 4 & 4 \\ 4 & 2 & 12 & 1 & 4 & 6 & 3 & 12 \\ 4 & 2 & 12 & 4 & 1 & 6 & 12 & 3 \\ 6 & 3 & 2 & 6 & 6 & 1 & 2 & 2 \\ 12 & 6 & 4 & 3 & 12 & 2 & 1 & 4 \\ 12 & 6 & 4 & 12 & 3 & 2 & 4 & 1 \end{array}\right)\)
Isogeny graph
sage: E.isogeny_graph().plot(edge_labels=True)
The vertices are labelled with Cremona labels.