Properties

Label 150c
Number of curves 88
Conductor 150150
CM no
Rank 00
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
E = EllipticCurve("c1")
 
E.isogeny_class()
 

Elliptic curves in class 150c

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
150.b8 150c1 [1,1,1,37,281][1, 1, 1, 37, 281] 357911/2160357911/2160 33750000-33750000 [4][4] 4848 0.126430.12643 Γ0(N)\Gamma_0(N)-optimal
150.b6 150c2 [1,1,1,463,3281][1, 1, 1, -463, 3281] 702595369/72900702595369/72900 11390625001139062500 [2,2][2, 2] 9696 0.473010.47301  
150.b7 150c3 [1,1,1,338,7969][1, 1, 1, -338, -7969] 273359449/1536000-273359449/1536000 24000000000-24000000000 [4][4] 144144 0.675740.67574  
150.b5 150c4 [1,1,1,1713,24219][1, 1, 1, -1713, -24219] 35578826569/531441035578826569/5314410 8303765625083037656250 [2][2] 192192 0.819580.81958  
150.b4 150c5 [1,1,1,7213,232781][1, 1, 1, -7213, 232781] 2656166199049/337502656166199049/33750 527343750527343750 [2][2] 192192 0.819580.81958  
150.b3 150c6 [1,1,1,8338,295969][1, 1, 1, -8338, -295969] 4102915888729/90000004102915888729/9000000 140625000000140625000000 [2,2][2, 2] 288288 1.02231.0223  
150.b1 150c7 [1,1,1,133338,18795969][1, 1, 1, -133338, -18795969] 16778985534208729/8100016778985534208729/81000 12656250001265625000 [2][2] 576576 1.36891.3689  
150.b2 150c8 [1,1,1,11338,67969][1, 1, 1, -11338, -67969] 10316097499609/585937500010316097499609/5859375000 9155273437500091552734375000 [2][2] 576576 1.36891.3689  

Rank

sage: E.rank()
 

The elliptic curves in class 150c have rank 00.

Complex multiplication

The elliptic curves in class 150c do not have complex multiplication.

Modular form 150.2.a.c

sage: E.q_eigenform(10)
 
q+q2q3+q4q6+4q7+q8+q9q122q13+4q14+q166q17+q184q19+O(q20)q + q^{2} - q^{3} + q^{4} - q^{6} + 4 q^{7} + q^{8} + q^{9} - q^{12} - 2 q^{13} + 4 q^{14} + q^{16} - 6 q^{17} + q^{18} - 4 q^{19} + O(q^{20}) Copy content Toggle raw display

Isogeny matrix

sage: E.isogeny_class().matrix()
 

The i,ji,j entry is the smallest degree of a cyclic isogeny between the ii-th and jj-th curve in the isogeny class, in the Cremona numbering.

(1234461212216223663611212244421214631242124161236326612212643122141264123241)\left(\begin{array}{rrrrrrrr} 1 & 2 & 3 & 4 & 4 & 6 & 12 & 12 \\ 2 & 1 & 6 & 2 & 2 & 3 & 6 & 6 \\ 3 & 6 & 1 & 12 & 12 & 2 & 4 & 4 \\ 4 & 2 & 12 & 1 & 4 & 6 & 3 & 12 \\ 4 & 2 & 12 & 4 & 1 & 6 & 12 & 3 \\ 6 & 3 & 2 & 6 & 6 & 1 & 2 & 2 \\ 12 & 6 & 4 & 3 & 12 & 2 & 1 & 4 \\ 12 & 6 & 4 & 12 & 3 & 2 & 4 & 1 \end{array}\right)

Isogeny graph

sage: E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with Cremona labels.