Properties

Label 1512.d
Number of curves $1$
Conductor $1512$
CM no
Rank $1$

Related objects

Downloads

Learn more

Show commands: SageMath
E = EllipticCurve("d1")
 
E.isogeny_class()
 

Elliptic curves in class 1512.d

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
1512.d1 1512k1 \([0, 0, 0, -108, 324]\) \(27648/7\) \(35271936\) \([]\) \(288\) \(0.15796\) \(\Gamma_0(N)\)-optimal

Rank

sage: E.rank()
 

The elliptic curve 1512.d1 has rank \(1\).

Complex multiplication

The elliptic curves in class 1512.d do not have complex multiplication.

Modular form 1512.2.a.d

sage: E.q_eigenform(10)
 
\(q - q^{5} - q^{7} + 2 q^{11} - 4 q^{13} + 3 q^{17} + 2 q^{19} + O(q^{20})\) Copy content Toggle raw display