Properties

Label 1520.c
Number of curves 22
Conductor 15201520
CM no
Rank 11
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
E = EllipticCurve("c1")
 
E.isogeny_class()
 

Elliptic curves in class 1520.c

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
1520.c1 1520d2 [0,1,0,20,20][0, 1, 0, -20, -20] 3631696/18053631696/1805 462080462080 [2][2] 256256 0.22008-0.22008  
1520.c2 1520d1 [0,1,0,5,0][0, 1, 0, 5, 0] 702464/475702464/475 7600-7600 [2][2] 128128 0.56666-0.56666 Γ0(N)\Gamma_0(N)-optimal

Rank

sage: E.rank()
 

The elliptic curves in class 1520.c have rank 11.

Complex multiplication

The elliptic curves in class 1520.c do not have complex multiplication.

Modular form 1520.2.a.c

sage: E.q_eigenform(10)
 
q2q3+q54q7+q9+4q112q15+6q17+q19+O(q20)q - 2 q^{3} + q^{5} - 4 q^{7} + q^{9} + 4 q^{11} - 2 q^{15} + 6 q^{17} + q^{19} + O(q^{20}) Copy content Toggle raw display

Isogeny matrix

sage: E.isogeny_class().matrix()
 

The i,ji,j entry is the smallest degree of a cyclic isogeny between the ii-th and jj-th curve in the isogeny class, in the LMFDB numbering.

(1221)\left(\begin{array}{rr} 1 & 2 \\ 2 & 1 \end{array}\right)

Isogeny graph

sage: E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.