Properties

Label 1520j1
Conductor 15201520
Discriminant 9728000000-9728000000
j-invariant 29922091212375000 -\frac{2992209121}{2375000}
CM no
Rank 11
Torsion structure trivial

Related objects

Downloads

Learn more

Show commands: Magma / Oscar / PariGP / SageMath

Minimal Weierstrass equation

Minimal Weierstrass equation

Simplified equation

y2=x3x2480x+6400y^2=x^3-x^2-480x+6400 Copy content Toggle raw display (homogenize, simplify)
y2z=x3x2z480xz2+6400z3y^2z=x^3-x^2z-480xz^2+6400z^3 Copy content Toggle raw display (dehomogenize, simplify)
y2=x338907x+4548906y^2=x^3-38907x+4548906 Copy content Toggle raw display (homogenize, minimize)

comment: Define the curve
 
sage: E = EllipticCurve([0, -1, 0, -480, 6400])
 
gp: E = ellinit([0, -1, 0, -480, 6400])
 
magma: E := EllipticCurve([0, -1, 0, -480, 6400]);
 
oscar: E = elliptic_curve([0, -1, 0, -480, 6400])
 
sage: E.short_weierstrass_model()
 
magma: WeierstrassModel(E);
 
oscar: short_weierstrass_model(E)
 

Mordell-Weil group structure

Z\Z

magma: MordellWeilGroup(E);
 

Mordell-Weil generators

PPh^(P)\hat{h}(P)Order
(0,80)(0, 80)0.0887580904384115023087316405370.088758090438411502308731640537\infty

Integral points

(15,±100)(-15,\pm 100), (0,±80)(0,\pm 80), (10,±50)(10,\pm 50), (42,±242)(42,\pm 242), (160,±2000)(160,\pm 2000) Copy content Toggle raw display

comment: Integral points
 
sage: E.integral_points()
 
magma: IntegralPoints(E);
 

Invariants

Conductor: NN  =  1520 1520  = 245192^{4} \cdot 5 \cdot 19
comment: Conductor
 
sage: E.conductor().factor()
 
gp: ellglobalred(E)[1]
 
magma: Conductor(E);
 
oscar: conductor(E)
 
Discriminant: Δ\Delta  =  9728000000-9728000000 = 12155619-1 \cdot 2^{15} \cdot 5^{6} \cdot 19
comment: Discriminant
 
sage: E.discriminant().factor()
 
gp: E.disc
 
magma: Discriminant(E);
 
oscar: discriminant(E)
 
j-invariant: jj  =  29922091212375000 -\frac{2992209121}{2375000}  = 123561131911313-1 \cdot 2^{-3} \cdot 5^{-6} \cdot 11^{3} \cdot 19^{-1} \cdot 131^{3}
comment: j-invariant
 
sage: E.j_invariant().factor()
 
gp: E.j
 
magma: jInvariant(E);
 
oscar: j_invariant(E)
 
Endomorphism ring: End(E)\mathrm{End}(E) = Z\Z
Geometric endomorphism ring: End(EQ)\mathrm{End}(E_{\overline{\Q}})  =  Z\Z    (no potential complex multiplication)
sage: E.has_cm()
 
magma: HasComplexMultiplication(E);
 
Sato-Tate group: ST(E)\mathrm{ST}(E) = SU(2)\mathrm{SU}(2)
Faltings height: hFaltingsh_{\mathrm{Faltings}} ≈ 0.614979739340351863092408373710.61497973934035186309240837371
gp: ellheight(E)
 
magma: FaltingsHeight(E);
 
oscar: faltings_height(E)
 
Stable Faltings height: hstableh_{\mathrm{stable}} ≈ 0.078167441219593446324823747748-0.078167441219593446324823747748
magma: StableFaltingsHeight(E);
 
oscar: stable_faltings_height(E)
 
abcabc quality: QQ ≈ 0.908761910901670.90876191090167
Szpiro ratio: σm\sigma_{m} ≈ 4.2313162106351744.231316210635174

BSD invariants

Analytic rank: ranr_{\mathrm{an}} = 1 1
sage: E.analytic_rank()
 
gp: ellanalyticrank(E)
 
magma: AnalyticRank(E);
 
Mordell-Weil rank: rr = 1 1
comment: Rank
 
sage: E.rank()
 
gp: [lower,upper] = ellrank(E)
 
magma: Rank(E);
 
Regulator: Reg(E/Q)\mathrm{Reg}(E/\Q) ≈ 0.0887580904384115023087316405370.088758090438411502308731640537
comment: Regulator
 
sage: E.regulator()
 
G = E.gen \\ if available
 
matdet(ellheightmatrix(E,G))
 
magma: Regulator(E);
 
Real period: Ω\Omega ≈ 1.18554100406073098452791700191.1855410040607309845279170019
comment: Real Period
 
sage: E.period_lattice().omega()
 
gp: if(E.disc>0,2,1)*E.omega[1]
 
magma: (Discriminant(E) gt 0 select 2 else 1) * RealPeriod(E);
 
Tamagawa product: pcp\prod_{p}c_p = 24 24  = 22(23)1 2^{2}\cdot( 2 \cdot 3 )\cdot1
comment: Tamagawa numbers
 
sage: E.tamagawa_numbers()
 
gp: gr=ellglobalred(E); [[gr[4][i,1],gr[5][i][4]] | i<-[1..#gr[4][,1]]]
 
magma: TamagawaNumbers(E);
 
oscar: tamagawa_numbers(E)
 
Torsion order: #E(Q)tor\#E(\Q)_{\mathrm{tor}} = 11
comment: Torsion order
 
sage: E.torsion_order()
 
gp: elltors(E)[1]
 
magma: Order(TorsionSubgroup(E));
 
oscar: prod(torsion_structure(E)[1])
 
Special value: L(E,1) L'(E,1) ≈ 2.52543253576482093190523169642.5254325357648209319052316964
comment: Special L-value
 
r = E.rank();
 
E.lseries().dokchitser().derivative(1,r)/r.factorial()
 
gp: [r,L1r] = ellanalyticrank(E); L1r/r!
 
magma: Lr1 where r,Lr1 := AnalyticRank(E: Precision:=12);
 
Analytic order of Ш: Шan{}_{\mathrm{an}}  ≈  11    (rounded)
comment: Order of Sha
 
sage: E.sha().an_numerical()
 
magma: MordellWeilShaInformation(E);
 

BSD formula

2.525432536L(E,1)=#Ш(E/Q)ΩEReg(E/Q)pcp#E(Q)tor211.1855410.08875824122.525432536\displaystyle 2.525432536 \approx L'(E,1) = \frac{\# Ш(E/\Q)\cdot \Omega_E \cdot \mathrm{Reg}(E/\Q) \cdot \prod_p c_p}{\#E(\Q)_{\rm tor}^2} \approx \frac{1 \cdot 1.185541 \cdot 0.088758 \cdot 24}{1^2} \approx 2.525432536

# self-contained SageMath code snippet for the BSD formula (checks rank, computes analytic sha)
 
E = EllipticCurve(%s); r = E.rank(); ar = E.analytic_rank(); assert r == ar;
 
Lr1 = E.lseries().dokchitser().derivative(1,r)/r.factorial(); sha = E.sha().an_numerical();
 
omega = E.period_lattice().omega(); reg = E.regulator(); tam = E.tamagawa_product(); tor = E.torsion_order();
 
assert r == ar; print("analytic sha: " + str(RR(Lr1) * tor^2 / (omega * reg * tam)))
 
/* self-contained Magma code snippet for the BSD formula (checks rank, computes analytic sha) */
 
E := EllipticCurve(%s); r := Rank(E); ar,Lr1 := AnalyticRank(E: Precision := 12); assert r eq ar;
 
sha := MordellWeilShaInformation(E); omega := RealPeriod(E) * (Discriminant(E) gt 0 select 2 else 1);
 
reg := Regulator(E); tam := &*TamagawaNumbers(E); tor := #TorsionSubgroup(E);
 
assert r eq ar; print "analytic sha:", Lr1 * tor^2 / (omega * reg * tam);
 

Modular invariants

Modular form   1520.2.a.d

qq3+q5+q72q9q13q153q17q19+O(q20) q - q^{3} + q^{5} + q^{7} - 2 q^{9} - q^{13} - q^{15} - 3 q^{17} - q^{19} + O(q^{20}) Copy content Toggle raw display

comment: q-expansion of modular form
 
sage: E.q_eigenform(20)
 
\\ actual modular form, use for small N
 
[mf,F] = mffromell(E)
 
Ser(mfcoefs(mf,20),q)
 
\\ or just the series
 
Ser(ellan(E,20),q)*q
 
magma: ModularForm(E);
 

For more coefficients, see the Downloads section to the right.

Modular degree: 576
comment: Modular degree
 
sage: E.modular_degree()
 
gp: ellmoddegree(E)
 
magma: ModularDegree(E);
 
Γ0(N) \Gamma_0(N) -optimal: yes
Manin constant: 1
comment: Manin constant
 
magma: ManinConstant(E);
 

Local data at primes of bad reduction

This elliptic curve is not semistable. There are 3 primes pp of bad reduction:

pp Tamagawa number Kodaira symbol Reduction type Root number ordp(N)\mathrm{ord}_p(N) ordp(Δ)\mathrm{ord}_p(\Delta) ordp(den(j))\mathrm{ord}_p(\mathrm{den}(j))
22 44 I7I_{7}^{*} additive -1 4 15 3
55 66 I6I_{6} split multiplicative -1 1 6 6
1919 11 I1I_{1} nonsplit multiplicative 1 1 1 1

comment: Local data
 
sage: E.local_data()
 
gp: ellglobalred(E)[5]
 
magma: [LocalInformation(E,p) : p in BadPrimes(E)];
 
oscar: [(p,tamagawa_number(E,p), kodaira_symbol(E,p), reduction_type(E,p)) for p in bad_primes(E)]
 

Galois representations

The \ell-adic Galois representation has maximal image for all primes \ell except those listed in the table below.

prime \ell mod-\ell image \ell-adic image
33 3B 3.4.0.1

comment: mod p Galois image
 
sage: rho = E.galois_representation(); [rho.image_type(p) for p in rho.non_surjective()]
 
magma: [GaloisRepresentation(E,p): p in PrimesUpTo(20)];
 

gens = [[4, 3, 9, 7], [113, 450, 0, 455], [229, 6, 231, 19], [97, 6, 291, 19], [1, 6, 0, 1], [3, 4, 8, 11], [451, 6, 450, 7], [438, 25, 361, 267], [1, 0, 6, 1]]
 
GL(2,Integers(456)).subgroup(gens)
 
Gens := [[4, 3, 9, 7], [113, 450, 0, 455], [229, 6, 231, 19], [97, 6, 291, 19], [1, 6, 0, 1], [3, 4, 8, 11], [451, 6, 450, 7], [438, 25, 361, 267], [1, 0, 6, 1]];
 
sub<GL(2,Integers(456))|Gens>;
 

The image H:=ρE(Gal(Q/Q))H:=\rho_E(\Gal(\overline{\Q}/\Q)) of the adelic Galois representation has level 456=23319 456 = 2^{3} \cdot 3 \cdot 19 , index 1616, genus 00, and generators

(4397),(1134500455),(229623119),(97629119),(1601),(34811),(45164507),(43825361267),(1061)\left(\begin{array}{rr} 4 & 3 \\ 9 & 7 \end{array}\right),\left(\begin{array}{rr} 113 & 450 \\ 0 & 455 \end{array}\right),\left(\begin{array}{rr} 229 & 6 \\ 231 & 19 \end{array}\right),\left(\begin{array}{rr} 97 & 6 \\ 291 & 19 \end{array}\right),\left(\begin{array}{rr} 1 & 6 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 3 & 4 \\ 8 & 11 \end{array}\right),\left(\begin{array}{rr} 451 & 6 \\ 450 & 7 \end{array}\right),\left(\begin{array}{rr} 438 & 25 \\ 361 & 267 \end{array}\right),\left(\begin{array}{rr} 1 & 0 \\ 6 & 1 \end{array}\right).

Input positive integer mm to see the generators of the reduction of HH to GL2(Z/mZ)\mathrm{GL}_2(\Z/m\Z):

The torsion field K:=Q(E[456])K:=\Q(E[456]) is a degree-567336960567336960 Galois extension of Q\Q with Gal(K/Q)\Gal(K/\Q) isomorphic to the projection of HH to GL2(Z/456Z)\GL_2(\Z/456\Z).

The table below list all primes \ell for which the Serre invariants associated to the mod-\ell Galois representation are exceptional.

\ell Reduction type Serre weight Serre conductor
22 additive 44 19 19
33 good 22 304=2419 304 = 2^{4} \cdot 19
55 split multiplicative 66 304=2419 304 = 2^{4} \cdot 19
1919 nonsplit multiplicative 2020 80=245 80 = 2^{4} \cdot 5

Isogenies

gp: ellisomat(E)
 

This curve has non-trivial cyclic isogenies of degree dd for d=d= 3.
Its isogeny class 1520j consists of 2 curves linked by isogenies of degree 3.

Twists

The minimal quadratic twist of this elliptic curve is 190c1, its twist by 4-4.

Growth of torsion in number fields

The number fields KK of degree less than 24 such that E(K)torsE(K)_{\rm tors} is strictly larger than E(Q)torsE(\Q)_{\rm tors} (which is trivial) are as follows:

[K:Q][K:\Q] KK E(K)torsE(K)_{\rm tors} Base change curve
22 Q(1)\Q(\sqrt{-1}) Z/3Z\Z/3\Z 2.0.4.1-18050.2-c2
33 3.1.152.1 Z/2Z\Z/2\Z not in database
66 6.0.3511808.1 Z/2ZZ/2Z\Z/2\Z \oplus \Z/2\Z not in database
66 6.2.225194688.1 Z/3Z\Z/3\Z not in database
66 6.0.369664.2 Z/6Z\Z/6\Z not in database
1212 deg 12 Z/4Z\Z/4\Z not in database
1212 deg 12 Z/3ZZ/3Z\Z/3\Z \oplus \Z/3\Z not in database
1212 12.0.789298907447296.11 Z/2ZZ/6Z\Z/2\Z \oplus \Z/6\Z not in database
1818 18.0.26950780101863616712704000000000000.1 Z/9Z\Z/9\Z not in database
1818 18.2.16886575097524892571355507064832.1 Z/6Z\Z/6\Z not in database

We only show fields where the torsion growth is primitive. For fields not in the database, click on the degree shown to reveal the defining polynomial.

Iwasawa invariants

pp 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47
Reduction type add ord split ord ss ord ord nonsplit ord ord ord ord ord ord ss
λ\lambda-invariant(s) - 1 4 1 1,1 1 1 1 1 1 1 1 1 1 3,1
μ\mu-invariant(s) - 0 0 0 0,0 0 0 0 0 0 0 0 0 0 0,0

An entry - indicates that the invariants are not computed because the reduction is additive.

pp-adic regulators

Note: pp-adic regulator data only exists for primes p5p\ge 5 of good ordinary reduction.