Properties

Label 15210l1
Conductor 1521015210
Discriminant 5.205×1013-5.205\times 10^{13}
j-invariant 26090640812500000 -\frac{2609064081}{2500000}
CM no
Rank 00
Torsion structure trivial

Related objects

Downloads

Learn more

Show commands: Magma / Oscar / PariGP / SageMath

Minimal Weierstrass equation

Minimal Weierstrass equation

Simplified equation

y2+xy=x3x27890x437644y^2+xy=x^3-x^2-7890x-437644 Copy content Toggle raw display (homogenize, simplify)
y2z+xyz=x3x2z7890xz2437644z3y^2z+xyz=x^3-x^2z-7890xz^2-437644z^3 Copy content Toggle raw display (dehomogenize, simplify)
y2=x3126243x28135458y^2=x^3-126243x-28135458 Copy content Toggle raw display (homogenize, minimize)

comment: Define the curve
 
sage: E = EllipticCurve([1, -1, 0, -7890, -437644])
 
gp: E = ellinit([1, -1, 0, -7890, -437644])
 
magma: E := EllipticCurve([1, -1, 0, -7890, -437644]);
 
oscar: E = elliptic_curve([1, -1, 0, -7890, -437644])
 
sage: E.short_weierstrass_model()
 
magma: WeierstrassModel(E);
 
oscar: short_weierstrass_model(E)
 

Mordell-Weil group structure

trivial

magma: MordellWeilGroup(E);
 

Invariants

Conductor: NN  =  15210 15210  = 23251322 \cdot 3^{2} \cdot 5 \cdot 13^{2}
comment: Conductor
 
sage: E.conductor().factor()
 
gp: ellglobalred(E)[1]
 
magma: Conductor(E);
 
oscar: conductor(E)
 
Discriminant: Δ\Delta  =  52052422500000-52052422500000 = 1253657134-1 \cdot 2^{5} \cdot 3^{6} \cdot 5^{7} \cdot 13^{4}
comment: Discriminant
 
sage: E.discriminant().factor()
 
gp: E.disc
 
magma: Discriminant(E);
 
oscar: discriminant(E)
 
j-invariant: jj  =  26090640812500000 -\frac{2609064081}{2500000}  = 1253357132833-1 \cdot 2^{-5} \cdot 3^{3} \cdot 5^{-7} \cdot 13^{2} \cdot 83^{3}
comment: j-invariant
 
sage: E.j_invariant().factor()
 
gp: E.j
 
magma: jInvariant(E);
 
oscar: j_invariant(E)
 
Endomorphism ring: End(E)\mathrm{End}(E) = Z\Z
Geometric endomorphism ring: End(EQ)\mathrm{End}(E_{\overline{\Q}})  =  Z\Z    (no potential complex multiplication)
sage: E.has_cm()
 
magma: HasComplexMultiplication(E);
 
Sato-Tate group: ST(E)\mathrm{ST}(E) = SU(2)\mathrm{SU}(2)
Faltings height: hFaltingsh_{\mathrm{Faltings}} ≈ 1.32813662149055799500003843861.3281366214905579950000384386
gp: ellheight(E)
 
magma: FaltingsHeight(E);
 
oscar: faltings_height(E)
 
Stable Faltings height: hstableh_{\mathrm{stable}} ≈ 0.076152641997342429382079993716-0.076152641997342429382079993716
magma: StableFaltingsHeight(E);
 
oscar: stable_faltings_height(E)
 
abcabc quality: QQ ≈ 1.05127998868744821.0512799886874482
Szpiro ratio: σm\sigma_{m} ≈ 4.102975933325354.10297593332535

BSD invariants

Analytic rank: ranr_{\mathrm{an}} = 0 0
sage: E.analytic_rank()
 
gp: ellanalyticrank(E)
 
magma: AnalyticRank(E);
 
Mordell-Weil rank: rr = 0 0
comment: Rank
 
sage: E.rank()
 
gp: [lower,upper] = ellrank(E)
 
magma: Rank(E);
 
Regulator: Reg(E/Q)\mathrm{Reg}(E/\Q) = 11
comment: Regulator
 
sage: E.regulator()
 
G = E.gen \\ if available
 
matdet(ellheightmatrix(E,G))
 
magma: Regulator(E);
 
Real period: Ω\Omega ≈ 0.243743780782939870084645352900.24374378078293987008464535290
comment: Real Period
 
sage: E.period_lattice().omega()
 
gp: if(E.disc>0,2,1)*E.omega[1]
 
magma: (Discriminant(E) gt 0 select 2 else 1) * RealPeriod(E);
 
Tamagawa product: pcp\prod_{p}c_p = 6 6  = 1213 1\cdot2\cdot1\cdot3
comment: Tamagawa numbers
 
sage: E.tamagawa_numbers()
 
gp: gr=ellglobalred(E); [[gr[4][i,1],gr[5][i][4]] | i<-[1..#gr[4][,1]]]
 
magma: TamagawaNumbers(E);
 
oscar: tamagawa_numbers(E)
 
Torsion order: #E(Q)tor\#E(\Q)_{\mathrm{tor}} = 11
comment: Torsion order
 
sage: E.torsion_order()
 
gp: elltors(E)[1]
 
magma: Order(TorsionSubgroup(E));
 
oscar: prod(torsion_structure(E)[1])
 
Special value: L(E,1) L(E,1) ≈ 1.46246268469763922050787211741.4624626846976392205078721174
comment: Special L-value
 
r = E.rank();
 
E.lseries().dokchitser().derivative(1,r)/r.factorial()
 
gp: [r,L1r] = ellanalyticrank(E); L1r/r!
 
magma: Lr1 where r,Lr1 := AnalyticRank(E: Precision:=12);
 
Analytic order of Ш: Шan{}_{\mathrm{an}}  =  11    (exact)
comment: Order of Sha
 
sage: E.sha().an_numerical()
 
magma: MordellWeilShaInformation(E);
 

BSD formula

1.462462685L(E,1)=#Ш(E/Q)ΩEReg(E/Q)pcp#E(Q)tor210.2437441.0000006121.462462685\displaystyle 1.462462685 \approx L(E,1) = \frac{\# Ш(E/\Q)\cdot \Omega_E \cdot \mathrm{Reg}(E/\Q) \cdot \prod_p c_p}{\#E(\Q)_{\rm tor}^2} \approx \frac{1 \cdot 0.243744 \cdot 1.000000 \cdot 6}{1^2} \approx 1.462462685

# self-contained SageMath code snippet for the BSD formula (checks rank, computes analytic sha)
 
E = EllipticCurve(%s); r = E.rank(); ar = E.analytic_rank(); assert r == ar;
 
Lr1 = E.lseries().dokchitser().derivative(1,r)/r.factorial(); sha = E.sha().an_numerical();
 
omega = E.period_lattice().omega(); reg = E.regulator(); tam = E.tamagawa_product(); tor = E.torsion_order();
 
assert r == ar; print("analytic sha: " + str(RR(Lr1) * tor^2 / (omega * reg * tam)))
 
/* self-contained Magma code snippet for the BSD formula (checks rank, computes analytic sha) */
 
E := EllipticCurve(%s); r := Rank(E); ar,Lr1 := AnalyticRank(E: Precision := 12); assert r eq ar;
 
sha := MordellWeilShaInformation(E); omega := RealPeriod(E) * (Discriminant(E) gt 0 select 2 else 1);
 
reg := Regulator(E); tam := &*TamagawaNumbers(E); tor := #TorsionSubgroup(E);
 
assert r eq ar; print "analytic sha:", Lr1 * tor^2 / (omega * reg * tam);
 

Modular invariants

Modular form   15210.2.a.d

qq2+q4q53q7q8+q10+3q11+3q14+q16+4q17+7q19+O(q20) q - q^{2} + q^{4} - q^{5} - 3 q^{7} - q^{8} + q^{10} + 3 q^{11} + 3 q^{14} + q^{16} + 4 q^{17} + 7 q^{19} + O(q^{20}) Copy content Toggle raw display

comment: q-expansion of modular form
 
sage: E.q_eigenform(20)
 
\\ actual modular form, use for small N
 
[mf,F] = mffromell(E)
 
Ser(mfcoefs(mf,20),q)
 
\\ or just the series
 
Ser(ellan(E,20),q)*q
 
magma: ModularForm(E);
 

For more coefficients, see the Downloads section to the right.

Modular degree: 53760
comment: Modular degree
 
sage: E.modular_degree()
 
gp: ellmoddegree(E)
 
magma: ModularDegree(E);
 
Γ0(N) \Gamma_0(N) -optimal: yes
Manin constant: 1
comment: Manin constant
 
magma: ManinConstant(E);
 

Local data at primes of bad reduction

This elliptic curve is not semistable. There are 4 primes pp of bad reduction:

pp Tamagawa number Kodaira symbol Reduction type Root number ordp(N)\mathrm{ord}_p(N) ordp(Δ)\mathrm{ord}_p(\Delta) ordp(den(j))\mathrm{ord}_p(\mathrm{den}(j))
22 11 I5I_{5} nonsplit multiplicative 1 1 5 5
33 22 I0I_0^{*} additive -1 2 6 0
55 11 I7I_{7} nonsplit multiplicative 1 1 7 7
1313 33 IVIV additive 1 2 4 0

comment: Local data
 
sage: E.local_data()
 
gp: ellglobalred(E)[5]
 
magma: [LocalInformation(E,p) : p in BadPrimes(E)];
 
oscar: [(p,tamagawa_number(E,p), kodaira_symbol(E,p), reduction_type(E,p)) for p in bad_primes(E)]
 

Galois representations

The \ell-adic Galois representation has maximal image for all primes \ell except those listed in the table below.

prime \ell mod-\ell image \ell-adic image
77 7B 7.8.0.1

comment: mod p Galois image
 
sage: rho = E.galois_representation(); [rho.image_type(p) for p in rho.non_surjective()]
 
magma: [GaloisRepresentation(E,p): p in PrimesUpTo(20)];
 

gens = [[8689, 7290, 378, 109], [2731, 9114, 0, 10531], [5461, 3654, 1827, 3739], [8191, 3654, 10017, 3739], [7279, 0, 0, 10919], [8737, 3654, 2919, 3739], [1, 0, 14, 1], [1, 14, 0, 1], [10907, 14, 10906, 15], [8, 5, 91, 57]]
 
GL(2,Integers(10920)).subgroup(gens)
 
Gens := [[8689, 7290, 378, 109], [2731, 9114, 0, 10531], [5461, 3654, 1827, 3739], [8191, 3654, 10017, 3739], [7279, 0, 0, 10919], [8737, 3654, 2919, 3739], [1, 0, 14, 1], [1, 14, 0, 1], [10907, 14, 10906, 15], [8, 5, 91, 57]];
 
sub<GL(2,Integers(10920))|Gens>;
 

The image H:=ρE(Gal(Q/Q))H:=\rho_E(\Gal(\overline{\Q}/\Q)) of the adelic Galois representation has level 10920=2335713 10920 = 2^{3} \cdot 3 \cdot 5 \cdot 7 \cdot 13 , index 9696, genus 22, and generators

(86897290378109),(27319114010531),(5461365418273739),(81913654100173739),(72790010919),(8737365429193739),(10141),(11401),(10907141090615),(859157)\left(\begin{array}{rr} 8689 & 7290 \\ 378 & 109 \end{array}\right),\left(\begin{array}{rr} 2731 & 9114 \\ 0 & 10531 \end{array}\right),\left(\begin{array}{rr} 5461 & 3654 \\ 1827 & 3739 \end{array}\right),\left(\begin{array}{rr} 8191 & 3654 \\ 10017 & 3739 \end{array}\right),\left(\begin{array}{rr} 7279 & 0 \\ 0 & 10919 \end{array}\right),\left(\begin{array}{rr} 8737 & 3654 \\ 2919 & 3739 \end{array}\right),\left(\begin{array}{rr} 1 & 0 \\ 14 & 1 \end{array}\right),\left(\begin{array}{rr} 1 & 14 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 10907 & 14 \\ 10906 & 15 \end{array}\right),\left(\begin{array}{rr} 8 & 5 \\ 91 & 57 \end{array}\right).

Input positive integer mm to see the generators of the reduction of HH to GL2(Z/mZ)\mathrm{GL}_2(\Z/m\Z):

The torsion field K:=Q(E[10920])K:=\Q(E[10920]) is a degree-1947721531392019477215313920 Galois extension of Q\Q with Gal(K/Q)\Gal(K/\Q) isomorphic to the projection of HH to GL2(Z/10920Z)\GL_2(\Z/10920\Z).

The table below list all primes \ell for which the Serre invariants associated to the mod-\ell Galois representation are exceptional.

\ell Reduction type Serre weight Serre conductor
22 nonsplit multiplicative 44 7605=325132 7605 = 3^{2} \cdot 5 \cdot 13^{2}
33 additive 66 1690=25132 1690 = 2 \cdot 5 \cdot 13^{2}
55 nonsplit multiplicative 66 1521=32132 1521 = 3^{2} \cdot 13^{2}
77 good 22 3042=232132 3042 = 2 \cdot 3^{2} \cdot 13^{2}
1313 additive 6262 90=2325 90 = 2 \cdot 3^{2} \cdot 5

Isogenies

gp: ellisomat(E)
 

This curve has non-trivial cyclic isogenies of degree dd for d=d= 7.
Its isogeny class 15210l consists of 2 curves linked by isogenies of degree 7.

Twists

The minimal quadratic twist of this elliptic curve is 1690g1, its twist by 3-3.

Growth of torsion in number fields

The number fields KK of degree less than 24 such that E(K)torsE(K)_{\rm tors} is strictly larger than E(Q)torsE(\Q)_{\rm tors} (which is trivial) are as follows:

[K:Q][K:\Q] KK E(K)torsE(K)_{\rm tors} Base change curve
33 3.1.6760.1 Z/2Z\Z/2\Z not in database
66 6.0.1827904000.1 Z/2ZZ/2Z\Z/2\Z \oplus \Z/2\Z not in database
66 6.0.771147.1 Z/7Z\Z/7\Z not in database
88 8.2.624629070000.2 Z/3Z\Z/3\Z not in database
1212 deg 12 Z/4Z\Z/4\Z not in database
1818 18.0.1878328153971890270208000000.1 Z/14Z\Z/14\Z not in database

We only show fields where the torsion growth is primitive. For fields not in the database, click on the degree shown to reveal the defining polynomial.

Iwasawa invariants

pp 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47
Reduction type nonsplit add nonsplit ord ord add ord ord ord ord ord ord ord ord ord
λ\lambda-invariant(s) 15 - 0 0 0 - 0 0 0 0 0 0 0 0 2
μ\mu-invariant(s) 0 - 0 0 0 - 0 0 0 0 0 0 0 0 0

An entry - indicates that the invariants are not computed because the reduction is additive.

pp-adic regulators

All pp-adic regulators are identically 11 since the rank is 00.