Properties

Label 152145.r2
Conductor 152145152145
Discriminant 2.773×1019-2.773\times 10^{19}
j-invariant 7864321330765625 -\frac{786432}{1330765625}
CM no
Rank 11
Torsion structure trivial

Related objects

Downloads

Learn more

Show commands: Magma / Oscar / PariGP / SageMath

Minimal Weierstrass equation

Minimal Weierstrass equation

Simplified equation

y2+y=x35292x253378645y^2+y=x^3-5292x-253378645 Copy content Toggle raw display (homogenize, simplify)
y2z+yz2=x35292xz2253378645z3y^2z+yz^2=x^3-5292xz^2-253378645z^3 Copy content Toggle raw display (dehomogenize, simplify)
y2=x384672x16216233264y^2=x^3-84672x-16216233264 Copy content Toggle raw display (homogenize, minimize)

comment: Define the curve
 
sage: E = EllipticCurve([0, 0, 1, -5292, -253378645])
 
gp: E = ellinit([0, 0, 1, -5292, -253378645])
 
magma: E := EllipticCurve([0, 0, 1, -5292, -253378645]);
 
oscar: E = elliptic_curve([0, 0, 1, -5292, -253378645])
 
sage: E.short_weierstrass_model()
 
magma: WeierstrassModel(E);
 
oscar: short_weierstrass_model(E)
 

Mordell-Weil group structure

Z\Z

magma: MordellWeilGroup(E);
 

Mordell-Weil generators

PPh^(P)\hat{h}(P)Order
(1183,37362)(1183, 37362)2.81259539948182204526603539842.8125953994818220452660353984\infty

Integral points

(1183,37362) \left(1183, 37362\right) , (1183,37363) \left(1183, -37363\right) Copy content Toggle raw display

comment: Integral points
 
sage: E.integral_points()
 
magma: IntegralPoints(E);
 

Invariants

Conductor: NN  =  152145 152145  = 33572233^{3} \cdot 5 \cdot 7^{2} \cdot 23
comment: Conductor
 
sage: E.conductor().factor()
 
gp: ellglobalred(E)[1]
 
magma: Conductor(E);
 
oscar: conductor(E)
 
Discriminant: Δ\Delta  =  27734709164782921875-27734709164782921875 = 13115677233-1 \cdot 3^{11} \cdot 5^{6} \cdot 7^{7} \cdot 23^{3}
comment: Discriminant
 
sage: E.discriminant().factor()
 
gp: E.disc
 
magma: Discriminant(E);
 
oscar: discriminant(E)
 
j-invariant: jj  =  7864321330765625 -\frac{786432}{1330765625}  = 121835671233-1 \cdot 2^{18} \cdot 3 \cdot 5^{-6} \cdot 7^{-1} \cdot 23^{-3}
comment: j-invariant
 
sage: E.j_invariant().factor()
 
gp: E.j
 
magma: jInvariant(E);
 
oscar: j_invariant(E)
 
Endomorphism ring: End(E)\mathrm{End}(E) = Z\Z
Geometric endomorphism ring: End(EQ)\mathrm{End}(E_{\overline{\Q}})  =  Z\Z    (no potential complex multiplication)
sage: E.has_cm()
 
magma: HasComplexMultiplication(E);
 
Sato-Tate group: ST(E)\mathrm{ST}(E) = SU(2)\mathrm{SU}(2)
Faltings height: hFaltingsh_{\mathrm{Faltings}} ≈ 2.40965152117409686721127415462.4096515211740968672112741546
gp: ellheight(E)
 
magma: FaltingsHeight(E);
 
oscar: faltings_height(E)
 
Stable Faltings height: hstableh_{\mathrm{stable}} ≈ 0.429635182034006330879622982360.42963518203400633087962298236
magma: StableFaltingsHeight(E);
 
oscar: stable_faltings_height(E)
 
abcabc quality: QQ ≈ 1.15536013516877011.1553601351687701
Szpiro ratio: σm\sigma_{m} ≈ 4.3765804179151684.376580417915168

BSD invariants

Analytic rank: ranr_{\mathrm{an}} = 1 1
sage: E.analytic_rank()
 
gp: ellanalyticrank(E)
 
magma: AnalyticRank(E);
 
Mordell-Weil rank: rr = 1 1
comment: Rank
 
sage: E.rank()
 
gp: [lower,upper] = ellrank(E)
 
magma: Rank(E);
 
Regulator: Reg(E/Q)\mathrm{Reg}(E/\Q) ≈ 2.81259539948182204526603539842.8125953994818220452660353984
comment: Regulator
 
sage: E.regulator()
 
G = E.gen \\ if available
 
matdet(ellheightmatrix(E,G))
 
magma: Regulator(E);
 
Real period: Ω\Omega ≈ 0.0964157501009481206256860045010.096415750100948120625686004501
comment: Real Period
 
sage: E.period_lattice().omega()
 
gp: if(E.disc>0,2,1)*E.omega[1]
 
magma: (Discriminant(E) gt 0 select 2 else 1) * RealPeriod(E);
 
Tamagawa product: pcp\prod_{p}c_p = 24 24  = 1(23)221 1\cdot( 2 \cdot 3 )\cdot2^{2}\cdot1
comment: Tamagawa numbers
 
sage: E.tamagawa_numbers()
 
gp: gr=ellglobalred(E); [[gr[4][i,1],gr[5][i][4]] | i<-[1..#gr[4][,1]]]
 
magma: TamagawaNumbers(E);
 
oscar: tamagawa_numbers(E)
 
Torsion order: #E(Q)tor\#E(\Q)_{\mathrm{tor}} = 11
comment: Torsion order
 
sage: E.torsion_order()
 
gp: elltors(E)[1]
 
magma: Order(TorsionSubgroup(E));
 
oscar: prod(torsion_structure(E)[1])
 
Special value: L(E,1) L'(E,1) ≈ 6.50828388411637688445598175726.5082838841163768844559817572
comment: Special L-value
 
r = E.rank();
 
E.lseries().dokchitser().derivative(1,r)/r.factorial()
 
gp: [r,L1r] = ellanalyticrank(E); L1r/r!
 
magma: Lr1 where r,Lr1 := AnalyticRank(E: Precision:=12);
 
Analytic order of Ш: Шan{}_{\mathrm{an}}  ≈  11    (rounded)
comment: Order of Sha
 
sage: E.sha().an_numerical()
 
magma: MordellWeilShaInformation(E);
 

BSD formula

6.508283884L(E,1)=#Ш(E/Q)ΩEReg(E/Q)pcp#E(Q)tor210.0964162.81259524126.508283884\displaystyle 6.508283884 \approx L'(E,1) = \frac{\# Ш(E/\Q)\cdot \Omega_E \cdot \mathrm{Reg}(E/\Q) \cdot \prod_p c_p}{\#E(\Q)_{\rm tor}^2} \approx \frac{1 \cdot 0.096416 \cdot 2.812595 \cdot 24}{1^2} \approx 6.508283884

# self-contained SageMath code snippet for the BSD formula (checks rank, computes analytic sha)
 
E = EllipticCurve(%s); r = E.rank(); ar = E.analytic_rank(); assert r == ar;
 
Lr1 = E.lseries().dokchitser().derivative(1,r)/r.factorial(); sha = E.sha().an_numerical();
 
omega = E.period_lattice().omega(); reg = E.regulator(); tam = E.tamagawa_product(); tor = E.torsion_order();
 
assert r == ar; print("analytic sha: " + str(RR(Lr1) * tor^2 / (omega * reg * tam)))
 
/* self-contained Magma code snippet for the BSD formula (checks rank, computes analytic sha) */
 
E := EllipticCurve(%s); r := Rank(E); ar,Lr1 := AnalyticRank(E: Precision := 12); assert r eq ar;
 
sha := MordellWeilShaInformation(E); omega := RealPeriod(E) * (Discriminant(E) gt 0 select 2 else 1);
 
reg := Regulator(E); tam := &*TamagawaNumbers(E); tor := #TorsionSubgroup(E);
 
assert r eq ar; print "analytic sha:", Lr1 * tor^2 / (omega * reg * tam);
 

Modular invariants

Modular form 152145.2.a.r

q2q4+q52q13+4q16+6q175q19+O(q20) q - 2 q^{4} + q^{5} - 2 q^{13} + 4 q^{16} + 6 q^{17} - 5 q^{19} + O(q^{20}) Copy content Toggle raw display

comment: q-expansion of modular form
 
sage: E.q_eigenform(20)
 
\\ actual modular form, use for small N
 
[mf,F] = mffromell(E)
 
Ser(mfcoefs(mf,20),q)
 
\\ or just the series
 
Ser(ellan(E,20),q)*q
 
magma: ModularForm(E);
 

For more coefficients, see the Downloads section to the right.

Modular degree: 2426112
comment: Modular degree
 
sage: E.modular_degree()
 
gp: ellmoddegree(E)
 
magma: ModularDegree(E);
 
Γ0(N) \Gamma_0(N) -optimal: no
Manin constant: 1
comment: Manin constant
 
magma: ManinConstant(E);
 

Local data at primes of bad reduction

This elliptic curve is not semistable. There are 4 primes pp of bad reduction:

pp Tamagawa number Kodaira symbol Reduction type Root number ordp(N)\mathrm{ord}_p(N) ordp(Δ)\mathrm{ord}_p(\Delta) ordp(den(j))\mathrm{ord}_p(\mathrm{den}(j))
33 11 IIII^{*} additive 1 3 11 0
55 66 I6I_{6} split multiplicative -1 1 6 6
77 44 I1I_{1}^{*} additive -1 2 7 1
2323 11 I3I_{3} nonsplit multiplicative 1 1 3 3

comment: Local data
 
sage: E.local_data()
 
gp: ellglobalred(E)[5]
 
magma: [LocalInformation(E,p) : p in BadPrimes(E)];
 
oscar: [(p,tamagawa_number(E,p), kodaira_symbol(E,p), reduction_type(E,p)) for p in bad_primes(E)]
 

Galois representations

The \ell-adic Galois representation has maximal image for all primes \ell except those listed in the table below.

prime \ell mod-\ell image \ell-adic image
33 3B 3.4.0.1

comment: mod p Galois image
 
sage: rho = E.galois_representation(); [rho.image_type(p) for p in rho.non_surjective()]
 
magma: [GaloisRepresentation(E,p): p in PrimesUpTo(20)];
 

gens = [[4, 3, 9, 7], [925, 6, 843, 19], [137, 960, 411, 947], [961, 6, 960, 7], [1, 6, 0, 1], [804, 155, 641, 786], [3, 4, 8, 11], [1, 0, 6, 1]]
 
GL(2,Integers(966)).subgroup(gens)
 
Gens := [[4, 3, 9, 7], [925, 6, 843, 19], [137, 960, 411, 947], [961, 6, 960, 7], [1, 6, 0, 1], [804, 155, 641, 786], [3, 4, 8, 11], [1, 0, 6, 1]];
 
sub<GL(2,Integers(966))|Gens>;
 

The image H:=ρE(Gal(Q/Q))H:=\rho_E(\Gal(\overline{\Q}/\Q)) of the adelic Galois representation has level 966=23723 966 = 2 \cdot 3 \cdot 7 \cdot 23 , index 1616, genus 00, and generators

(4397),(925684319),(137960411947),(96169607),(1601),(804155641786),(34811),(1061)\left(\begin{array}{rr} 4 & 3 \\ 9 & 7 \end{array}\right),\left(\begin{array}{rr} 925 & 6 \\ 843 & 19 \end{array}\right),\left(\begin{array}{rr} 137 & 960 \\ 411 & 947 \end{array}\right),\left(\begin{array}{rr} 961 & 6 \\ 960 & 7 \end{array}\right),\left(\begin{array}{rr} 1 & 6 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 804 & 155 \\ 641 & 786 \end{array}\right),\left(\begin{array}{rr} 3 & 4 \\ 8 & 11 \end{array}\right),\left(\begin{array}{rr} 1 & 0 \\ 6 & 1 \end{array}\right).

Input positive integer mm to see the generators of the reduction of HH to GL2(Z/mZ)\mathrm{GL}_2(\Z/m\Z):

The torsion field K:=Q(E[966])K:=\Q(E[966]) is a degree-96949923849694992384 Galois extension of Q\Q with Gal(K/Q)\Gal(K/\Q) isomorphic to the projection of HH to GL2(Z/966Z)\GL_2(\Z/966\Z).

The table below list all primes \ell for which the Serre invariants associated to the mod-\ell Galois representation are exceptional.

\ell Reduction type Serre weight Serre conductor
22 good 22 30429=337223 30429 = 3^{3} \cdot 7^{2} \cdot 23
33 additive 44 49=72 49 = 7^{2}
55 split multiplicative 66 30429=337223 30429 = 3^{3} \cdot 7^{2} \cdot 23
77 additive 3232 3105=33523 3105 = 3^{3} \cdot 5 \cdot 23
2323 nonsplit multiplicative 2424 6615=33572 6615 = 3^{3} \cdot 5 \cdot 7^{2}

Isogenies

gp: ellisomat(E)
 

This curve has non-trivial cyclic isogenies of degree dd for d=d= 3.
Its isogeny class 152145.r consists of 2 curves linked by isogenies of degree 3.

Twists

The minimal quadratic twist of this elliptic curve is 21735.c2, its twist by 7-7.

Growth of torsion in number fields

The number fields KK of degree less than 24 such that E(K)torsE(K)_{\rm tors} is strictly larger than E(Q)torsE(\Q)_{\rm tors} (which is trivial) are as follows:

[K:Q][K:\Q] KK E(K)torsE(K)_{\rm tors} Base change curve
22 Q(21)\Q(\sqrt{21}) Z/3Z\Z/3\Z not in database
33 3.1.17388.2 Z/2Z\Z/2\Z not in database
66 6.0.146031448752.2 Z/2ZZ/2Z\Z/2\Z \oplus \Z/2\Z not in database
66 6.0.992436543.1 Z/3Z\Z/3\Z not in database
66 6.2.6349193424.2 Z/6Z\Z/6\Z not in database
1212 deg 12 Z/4Z\Z/4\Z not in database
1212 deg 12 Z/3ZZ/3Z\Z/3\Z \oplus \Z/3\Z not in database
1212 deg 12 Z/2ZZ/6Z\Z/2\Z \oplus \Z/6\Z not in database
1818 18.6.439217840601969441093472500434139391997314453125.1 Z/9Z\Z/9\Z not in database
1818 18.0.432078577216252725580363091204875618578432.3 Z/6Z\Z/6\Z not in database

We only show fields where the torsion growth is primitive. For fields not in the database, click on the degree shown to reveal the defining polynomial.

Iwasawa invariants

No Iwasawa invariant data is available for this curve.

pp-adic regulators

pp-adic regulators are not yet computed for curves that are not Γ0\Gamma_0-optimal.