Properties

Label 152880.f
Number of curves $6$
Conductor $152880$
CM no
Rank $1$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
E = EllipticCurve("f1")
 
E.isogeny_class()
 

Elliptic curves in class 152880.f

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
152880.f1 152880ec6 \([0, -1, 0, -107153216, -426866360640]\) \(282352188585428161201/20813369346315\) \(10029760881560016629760\) \([2]\) \(18874368\) \(3.2720\)  
152880.f2 152880ec3 \([0, -1, 0, -36730416, 85693380480]\) \(11372424889583066401/50586128775\) \(24376964973567897600\) \([2]\) \(9437184\) \(2.9254\)  
152880.f3 152880ec4 \([0, -1, 0, -7134416, -5747205120]\) \(83339496416030401/18593645841225\) \(8960097646896250982400\) \([2, 2]\) \(9437184\) \(2.9254\)  
152880.f4 152880ec2 \([0, -1, 0, -2332416, 1294447680]\) \(2912015927948401/184878500625\) \(89091156869245440000\) \([2, 2]\) \(4718592\) \(2.5788\)  
152880.f5 152880ec1 \([0, -1, 0, 117584, 85127680]\) \(373092501599/6718359375\) \(-3237512241600000000\) \([2]\) \(2359296\) \(2.2322\) \(\Gamma_0(N)\)-optimal
152880.f6 152880ec5 \([0, -1, 0, 16052384, -35370660800]\) \(949279533867428399/1670570708285115\) \(-805031826469009386024960\) \([2]\) \(18874368\) \(3.2720\)  

Rank

sage: E.rank()
 

The elliptic curves in class 152880.f have rank \(1\).

Complex multiplication

The elliptic curves in class 152880.f do not have complex multiplication.

Modular form 152880.2.a.f

sage: E.q_eigenform(10)
 
\(q - q^{3} - q^{5} + q^{9} - 4 q^{11} - q^{13} + q^{15} - 2 q^{17} - 4 q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

sage: E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rrrrrr} 1 & 8 & 2 & 4 & 8 & 4 \\ 8 & 1 & 4 & 2 & 4 & 8 \\ 2 & 4 & 1 & 2 & 4 & 2 \\ 4 & 2 & 2 & 1 & 2 & 4 \\ 8 & 4 & 4 & 2 & 1 & 8 \\ 4 & 8 & 2 & 4 & 8 & 1 \end{array}\right)\)

Isogeny graph

sage: E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.