Properties

Label 152880.f
Number of curves 66
Conductor 152880152880
CM no
Rank 11
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("f1") E.isogeny_class()
 

Elliptic curves in class 152880.f

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
152880.f1 152880ec6 [0,1,0,107153216,426866360640][0, -1, 0, -107153216, -426866360640] 282352188585428161201/20813369346315282352188585428161201/20813369346315 1002976088156001662976010029760881560016629760 [2][2] 1887436818874368 3.27203.2720  
152880.f2 152880ec3 [0,1,0,36730416,85693380480][0, -1, 0, -36730416, 85693380480] 11372424889583066401/5058612877511372424889583066401/50586128775 2437696497356789760024376964973567897600 [2][2] 94371849437184 2.92542.9254  
152880.f3 152880ec4 [0,1,0,7134416,5747205120][0, -1, 0, -7134416, -5747205120] 83339496416030401/1859364584122583339496416030401/18593645841225 89600976468962509824008960097646896250982400 [2,2][2, 2] 94371849437184 2.92542.9254  
152880.f4 152880ec2 [0,1,0,2332416,1294447680][0, -1, 0, -2332416, 1294447680] 2912015927948401/1848785006252912015927948401/184878500625 8909115686924544000089091156869245440000 [2,2][2, 2] 47185924718592 2.57882.5788  
152880.f5 152880ec1 [0,1,0,117584,85127680][0, -1, 0, 117584, 85127680] 373092501599/6718359375373092501599/6718359375 3237512241600000000-3237512241600000000 [2][2] 23592962359296 2.23222.2322 Γ0(N)\Gamma_0(N)-optimal
152880.f6 152880ec5 [0,1,0,16052384,35370660800][0, -1, 0, 16052384, -35370660800] 949279533867428399/1670570708285115949279533867428399/1670570708285115 805031826469009386024960-805031826469009386024960 [2][2] 1887436818874368 3.27203.2720  

Rank

Copy content sage:E.rank()
 

The elliptic curves in class 152880.f have rank 11.

L-function data

 
Bad L-factors:
Prime L-Factor
2211
331+T1 + T
551+T1 + T
7711
13131+T1 + T
 
Good L-factors:
Prime L-Factor Isogeny Class over Fp\mathbb{F}_p
1111 1+4T+11T2 1 + 4 T + 11 T^{2} 1.11.e
1717 1+2T+17T2 1 + 2 T + 17 T^{2} 1.17.c
1919 1+4T+19T2 1 + 4 T + 19 T^{2} 1.19.e
2323 1+23T2 1 + 23 T^{2} 1.23.a
2929 1+2T+29T2 1 + 2 T + 29 T^{2} 1.29.c
\cdots\cdots\cdots
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 152880.f do not have complex multiplication.

Modular form 152880.2.a.f

Copy content sage:E.q_eigenform(10)
 
qq3q5+q94q11q13+q152q174q19+O(q20)q - q^{3} - q^{5} + q^{9} - 4 q^{11} - q^{13} + q^{15} - 2 q^{17} - 4 q^{19} + O(q^{20}) Copy content Toggle raw display

Isogeny matrix

Copy content sage:E.isogeny_class().matrix()
 

The i,ji,j entry is the smallest degree of a cyclic isogeny between the ii-th and jj-th curve in the isogeny class, in the LMFDB numbering.

(182484814248241242422124844218482481)\left(\begin{array}{rrrrrr} 1 & 8 & 2 & 4 & 8 & 4 \\ 8 & 1 & 4 & 2 & 4 & 8 \\ 2 & 4 & 1 & 2 & 4 & 2 \\ 4 & 2 & 2 & 1 & 2 & 4 \\ 8 & 4 & 4 & 2 & 1 & 8 \\ 4 & 8 & 2 & 4 & 8 & 1 \end{array}\right)

Isogeny graph

Copy content sage:E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.