Show commands:
SageMath
E = EllipticCurve("hz1")
E.isogeny_class()
Elliptic curves in class 152880hz
sage: E.isogeny_class().curves
LMFDB label | Cremona label | Weierstrass coefficients | j-invariant | Discriminant | Torsion structure | Modular degree | Faltings height | Optimality |
---|---|---|---|---|---|---|---|---|
152880.p1 | 152880hz1 | \([0, -1, 0, -27314576, -57178805424]\) | \(-7791602019623044/375378046875\) | \(-108579847434392880000000\) | \([]\) | \(18176256\) | \(3.1823\) | \(\Gamma_0(N)\)-optimal |
Rank
sage: E.rank()
The elliptic curve 152880hz1 has rank \(0\).
Complex multiplication
The elliptic curves in class 152880hz do not have complex multiplication.Modular form 152880.2.a.hz
sage: E.q_eigenform(10)