Properties

Label 153.c
Number of curves $4$
Conductor $153$
CM no
Rank $0$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
E = EllipticCurve("c1")
 
E.isogeny_class()
 

Elliptic curves in class 153.c

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
153.c1 153c3 \([1, -1, 0, -816, 9179]\) \(82483294977/17\) \(12393\) \([2]\) \(32\) \(0.17267\)  
153.c2 153c2 \([1, -1, 0, -51, 152]\) \(20346417/289\) \(210681\) \([2, 2]\) \(16\) \(-0.17390\)  
153.c3 153c1 \([1, -1, 0, -6, -1]\) \(35937/17\) \(12393\) \([2]\) \(8\) \(-0.52048\) \(\Gamma_0(N)\)-optimal
153.c4 153c4 \([1, -1, 0, -6, 377]\) \(-35937/83521\) \(-60886809\) \([2]\) \(32\) \(0.17267\)  

Rank

sage: E.rank()
 

The elliptic curves in class 153.c have rank \(0\).

Complex multiplication

The elliptic curves in class 153.c do not have complex multiplication.

Modular form 153.2.a.c

sage: E.q_eigenform(10)
 
\(q + q^{2} - q^{4} + 2 q^{5} + 4 q^{7} - 3 q^{8} + 2 q^{10} - 2 q^{13} + 4 q^{14} - q^{16} - q^{17} - 4 q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

sage: E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rrrr} 1 & 2 & 4 & 4 \\ 2 & 1 & 2 & 2 \\ 4 & 2 & 1 & 4 \\ 4 & 2 & 4 & 1 \end{array}\right)\)

Isogeny graph

sage: E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.