Show commands:
SageMath
E = EllipticCurve("c1")
E.isogeny_class()
Elliptic curves in class 153.c
sage: E.isogeny_class().curves
LMFDB label | Cremona label | Weierstrass coefficients | j-invariant | Discriminant | Torsion structure | Modular degree | Faltings height | Optimality |
---|---|---|---|---|---|---|---|---|
153.c1 | 153c3 | \([1, -1, 0, -816, 9179]\) | \(82483294977/17\) | \(12393\) | \([2]\) | \(32\) | \(0.17267\) | |
153.c2 | 153c2 | \([1, -1, 0, -51, 152]\) | \(20346417/289\) | \(210681\) | \([2, 2]\) | \(16\) | \(-0.17390\) | |
153.c3 | 153c1 | \([1, -1, 0, -6, -1]\) | \(35937/17\) | \(12393\) | \([2]\) | \(8\) | \(-0.52048\) | \(\Gamma_0(N)\)-optimal |
153.c4 | 153c4 | \([1, -1, 0, -6, 377]\) | \(-35937/83521\) | \(-60886809\) | \([2]\) | \(32\) | \(0.17267\) |
Rank
sage: E.rank()
The elliptic curves in class 153.c have rank \(0\).
Complex multiplication
The elliptic curves in class 153.c do not have complex multiplication.Modular form 153.2.a.c
sage: E.q_eigenform(10)
Isogeny matrix
sage: E.isogeny_class().matrix()
The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.
\(\left(\begin{array}{rrrr} 1 & 2 & 4 & 4 \\ 2 & 1 & 2 & 2 \\ 4 & 2 & 1 & 4 \\ 4 & 2 & 4 & 1 \end{array}\right)\)
Isogeny graph
sage: E.isogeny_graph().plot(edge_labels=True)
The vertices are labelled with LMFDB labels.