Show commands:
SageMath
E = EllipticCurve("p1")
E.isogeny_class()
Elliptic curves in class 1530.p
sage: E.isogeny_class().curves
LMFDB label | Cremona label | Weierstrass coefficients | j-invariant | Discriminant | Torsion structure | Modular degree | Faltings height | Optimality |
---|---|---|---|---|---|---|---|---|
1530.p1 | 1530o2 | \([1, -1, 1, -415742, -103064691]\) | \(10901014250685308569/1040774054400\) | \(758724285657600\) | \([2]\) | \(16128\) | \(1.8919\) | |
1530.p2 | 1530o1 | \([1, -1, 1, -24062, -1854579]\) | \(-2113364608155289/828431400960\) | \(-603926491299840\) | \([2]\) | \(8064\) | \(1.5453\) | \(\Gamma_0(N)\)-optimal |
Rank
sage: E.rank()
The elliptic curves in class 1530.p have rank \(0\).
Complex multiplication
The elliptic curves in class 1530.p do not have complex multiplication.Modular form 1530.2.a.p
sage: E.q_eigenform(10)
Isogeny matrix
sage: E.isogeny_class().matrix()
The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.
\(\left(\begin{array}{rr} 1 & 2 \\ 2 & 1 \end{array}\right)\)
Isogeny graph
sage: E.isogeny_graph().plot(edge_labels=True)
The vertices are labelled with LMFDB labels.