y 2 + x y = x 3 − x 2 + 225 x + 10125 y^2+xy=x^3-x^2+225x+10125 y 2 + x y = x 3 − x 2 + 2 2 5 x + 1 0 1 2 5
(homogenize , simplify )
y 2 z + x y z = x 3 − x 2 z + 225 x z 2 + 10125 z 3 y^2z+xyz=x^3-x^2z+225xz^2+10125z^3 y 2 z + x y z = x 3 − x 2 z + 2 2 5 x z 2 + 1 0 1 2 5 z 3
(dehomogenize , simplify )
y 2 = x 3 + 3597 x + 651598 y^2=x^3+3597x+651598 y 2 = x 3 + 3 5 9 7 x + 6 5 1 5 9 8
(homogenize , minimize )
sage: E = EllipticCurve([1, -1, 0, 225, 10125])
gp: E = ellinit([1, -1, 0, 225, 10125])
magma: E := EllipticCurve([1, -1, 0, 225, 10125]);
oscar: E = elliptic_curve([1, -1, 0, 225, 10125])
sage: E.short_weierstrass_model()
magma: WeierstrassModel(E);
oscar: short_weierstrass_model(E)
Z ⊕ Z / 2 Z \Z \oplus \Z/{2}\Z Z ⊕ Z / 2 Z
magma: MordellWeilGroup(E);
P P P h ^ ( P ) \hat{h}(P) h ^ ( P ) Order
( 6 , 105 ) (6, 105) ( 6 , 1 0 5 ) 0.60834903062564688853376260745 0.60834903062564688853376260745 0 . 6 0 8 3 4 9 0 3 0 6 2 5 6 4 6 8 8 8 5 3 3 7 6 2 6 0 7 4 5 ∞ \infty ∞
( − 18 , 9 ) (-18, 9) ( − 1 8 , 9 ) 0 0 0 2 2 2
( − 18 , 9 ) \left(-18, 9\right) ( − 1 8 , 9 ) , ( − 9 , 90 ) \left(-9, 90\right) ( − 9 , 9 0 ) , ( − 9 , − 81 ) \left(-9, -81\right) ( − 9 , − 8 1 ) , ( 6 , 105 ) \left(6, 105\right) ( 6 , 1 0 5 ) , ( 6 , − 111 ) \left(6, -111\right) ( 6 , − 1 1 1 ) , ( 33 , 213 ) \left(33, 213\right) ( 3 3 , 2 1 3 ) , ( 33 , − 246 ) \left(33, -246\right) ( 3 3 , − 2 4 6 ) , ( 118 , 1233 ) \left(118, 1233\right) ( 1 1 8 , 1 2 3 3 ) , ( 118 , − 1351 ) \left(118, -1351\right) ( 1 1 8 , − 1 3 5 1 )
sage: E.integral_points()
magma: IntegralPoints(E);
Invariants
Conductor :
N N N
=
1530 1530 1 5 3 0 = 2 ⋅ 3 2 ⋅ 5 ⋅ 17 2 \cdot 3^{2} \cdot 5 \cdot 17 2 ⋅ 3 2 ⋅ 5 ⋅ 1 7
sage: E.conductor().factor()
gp: ellglobalred(E)[1]
magma: Conductor(E);
oscar: conductor(E)
Discriminant :
Δ \Delta Δ
=
− 45507096000 -45507096000 − 4 5 5 0 7 0 9 6 0 0 0 = − 1 ⋅ 2 6 ⋅ 3 9 ⋅ 5 3 ⋅ 1 7 2 -1 \cdot 2^{6} \cdot 3^{9} \cdot 5^{3} \cdot 17^{2} − 1 ⋅ 2 6 ⋅ 3 9 ⋅ 5 3 ⋅ 1 7 2
sage: E.discriminant().factor()
gp: E.disc
magma: Discriminant(E);
oscar: discriminant(E)
j-invariant :
j j j
=
1723683599 62424000 \frac{1723683599}{62424000} 6 2 4 2 4 0 0 0 1 7 2 3 6 8 3 5 9 9 = 2 − 6 ⋅ 3 − 3 ⋅ 5 − 3 ⋅ 1 1 3 ⋅ 1 7 − 2 ⋅ 10 9 3 2^{-6} \cdot 3^{-3} \cdot 5^{-3} \cdot 11^{3} \cdot 17^{-2} \cdot 109^{3} 2 − 6 ⋅ 3 − 3 ⋅ 5 − 3 ⋅ 1 1 3 ⋅ 1 7 − 2 ⋅ 1 0 9 3
sage: E.j_invariant().factor()
gp: E.j
magma: jInvariant(E);
oscar: j_invariant(E)
Endomorphism ring :
E n d ( E ) \mathrm{End}(E) E n d ( E ) = Z \Z Z
Geometric endomorphism ring :
E n d ( E Q ‾ ) \mathrm{End}(E_{\overline{\Q}}) E n d ( E Q )
=
Z \Z Z
(no potential complex multiplication )
sage: E.has_cm()
magma: HasComplexMultiplication(E);
Sato-Tate group :
S T ( E ) \mathrm{ST}(E) S T ( E ) = S U ( 2 ) \mathrm{SU}(2) S U ( 2 )
Faltings height :
h F a l t i n g s h_{\mathrm{Faltings}} h F a l t i n g s ≈ 0.72500611180842225638169742161 0.72500611180842225638169742161 0 . 7 2 5 0 0 6 1 1 1 8 0 8 4 2 2 2 5 6 3 8 1 6 9 7 4 2 1 6 1
gp: ellheight(E)
magma: FaltingsHeight(E);
oscar: faltings_height(E)
Stable Faltings height :
h s t a b l e h_{\mathrm{stable}} h s t a b l e ≈ 0.17569996747436741068407480315 0.17569996747436741068407480315 0 . 1 7 5 6 9 9 9 6 7 4 7 4 3 6 7 4 1 0 6 8 4 0 7 4 8 0 3 1 5
magma: StableFaltingsHeight(E);
oscar: stable_faltings_height(E)
a b c abc a b c quality :
Q Q Q ≈ 0.9764195258143714 0.9764195258143714 0 . 9 7 6 4 1 9 5 2 5 8 1 4 3 7 1 4
Szpiro ratio :
σ m \sigma_{m} σ m ≈ 4.361058935833651 4.361058935833651 4 . 3 6 1 0 5 8 9 3 5 8 3 3 6 5 1
Analytic rank :
r a n r_{\mathrm{an}} r a n = 1 1 1
sage: E.analytic_rank()
gp: ellanalyticrank(E)
magma: AnalyticRank(E);
Mordell-Weil rank :
r r r = 1 1 1
sage: E.rank()
gp: [lower,upper] = ellrank(E)
magma: Rank(E);
Regulator :
R e g ( E / Q ) \mathrm{Reg}(E/\Q) R e g ( E / Q ) ≈ 0.60834903062564688853376260745 0.60834903062564688853376260745 0 . 6 0 8 3 4 9 0 3 0 6 2 5 6 4 6 8 8 8 5 3 3 7 6 2 6 0 7 4 5
sage: E.regulator()
gp: G = E.gen \\ if available
matdet(ellheightmatrix(E,G))
magma: Regulator(E);
Real period :
Ω \Omega Ω ≈ 0.85838225431823544894278661977 0.85838225431823544894278661977 0 . 8 5 8 3 8 2 2 5 4 3 1 8 2 3 5 4 4 8 9 4 2 7 8 6 6 1 9 7 7
sage: E.period_lattice().omega()
gp: if(E.disc>0,2,1)*E.omega[1]
magma: (Discriminant(E) gt 0 select 2 else 1) * RealPeriod(E);
Tamagawa product :
∏ p c p \prod_{p}c_p ∏ p c p = 16 16 1 6
= 2 ⋅ 2 2 ⋅ 1 ⋅ 2 2\cdot2^{2}\cdot1\cdot2 2 ⋅ 2 2 ⋅ 1 ⋅ 2
sage: E.tamagawa_numbers()
gp: gr=ellglobalred(E); [[gr[4][i,1],gr[5][i][4]] | i<-[1..#gr[4][,1]]]
magma: TamagawaNumbers(E);
oscar: tamagawa_numbers(E)
Torsion order :
# E ( Q ) t o r \#E(\Q)_{\mathrm{tor}} # E ( Q ) t o r = 2 2 2
sage: E.torsion_order()
gp: elltors(E)[1]
magma: Order(TorsionSubgroup(E));
oscar: prod(torsion_structure(E)[1])
Special value :
L ′ ( E , 1 ) L'(E,1) L ′ ( E , 1 ) ≈ 2.0887840492830241330510387447 2.0887840492830241330510387447 2 . 0 8 8 7 8 4 0 4 9 2 8 3 0 2 4 1 3 3 0 5 1 0 3 8 7 4 4 7
sage: r = E.rank();
E.lseries().dokchitser().derivative(1,r)/r.factorial()
gp: [r,L1r] = ellanalyticrank(E); L1r/r!
magma: Lr1 where r,Lr1 := AnalyticRank(E: Precision:=12);
Analytic order of Ш :
Шa n {}_{\mathrm{an}} a n
≈
1 1 1
(rounded )
sage: E.sha().an_numerical()
magma: MordellWeilShaInformation(E);
2.088784049 ≈ L ′ ( E , 1 ) = # Ш ( E / Q ) ⋅ Ω E ⋅ R e g ( E / Q ) ⋅ ∏ p c p # E ( Q ) t o r 2 ≈ 1 ⋅ 0.858382 ⋅ 0.608349 ⋅ 16 2 2 ≈ 2.088784049 \begin{aligned} 2.088784049 \approx L'(E,1) & = \frac{\# Ш(E/\Q)\cdot \Omega_E \cdot \mathrm{Reg}(E/\Q) \cdot \prod_p c_p}{\#E(\Q)_{\rm tor}^2} \\ & \approx \frac{1 \cdot 0.858382 \cdot 0.608349 \cdot 16}{2^2} \\ & \approx 2.088784049\end{aligned} 2 . 0 8 8 7 8 4 0 4 9 ≈ L ′ ( E , 1 ) = # E ( Q ) t o r 2 # Ш ( E / Q ) ⋅ Ω E ⋅ R e g ( E / Q ) ⋅ ∏ p c p ≈ 2 2 1 ⋅ 0 . 8 5 8 3 8 2 ⋅ 0 . 6 0 8 3 4 9 ⋅ 1 6 ≈ 2 . 0 8 8 7 8 4 0 4 9
sage: # self-contained SageMath code snippet for the BSD formula (checks rank, computes analytic sha)
E = EllipticCurve([1, -1, 0, 225, 10125]); r = E.rank(); ar = E.analytic_rank(); assert r == ar;
Lr1 = E.lseries().dokchitser().derivative(1,r)/r.factorial(); sha = E.sha().an_numerical();
omega = E.period_lattice().omega(); reg = E.regulator(); tam = E.tamagawa_product(); tor = E.torsion_order();
assert r == ar; print("analytic sha: " + str(RR(Lr1) * tor^2 / (omega * reg * tam)))
magma: /* self-contained Magma code snippet for the BSD formula (checks rank, computes analytic sha) */
E := EllipticCurve([1, -1, 0, 225, 10125]); r := Rank(E); ar,Lr1 := AnalyticRank(E: Precision := 12); assert r eq ar;
sha := MordellWeilShaInformation(E); omega := RealPeriod(E) * (Discriminant(E) gt 0 select 2 else 1);
reg := Regulator(E); tam := &*TamagawaNumbers(E); tor := #TorsionSubgroup(E);
assert r eq ar; print "analytic sha:", Lr1 * tor^2 / (omega * reg * tam);
Modular form
1530.2.a.c
q − q 2 + q 4 − q 5 + 2 q 7 − q 8 + q 10 − 4 q 13 − 2 q 14 + q 16 + q 17 − 4 q 19 + O ( q 20 ) q - q^{2} + q^{4} - q^{5} + 2 q^{7} - q^{8} + q^{10} - 4 q^{13} - 2 q^{14} + q^{16} + q^{17} - 4 q^{19} + O(q^{20}) q − q 2 + q 4 − q 5 + 2 q 7 − q 8 + q 1 0 − 4 q 1 3 − 2 q 1 4 + q 1 6 + q 1 7 − 4 q 1 9 + O ( q 2 0 )
sage: E.q_eigenform(20)
gp: \\ actual modular form, use for small N
[mf,F] = mffromell(E)
Ser(mfcoefs(mf,20),q)
\\ or just the series
Ser(ellan(E,20),q)*q
magma: ModularForm(E);
For more coefficients, see the Downloads section to the right.
This elliptic curve is not semistable .
There
are 4 primes p p p
of bad reduction :
sage: E.local_data()
gp: ellglobalred(E)[5]
magma: [LocalInformation(E,p) : p in BadPrimes(E)];
oscar: [(p,tamagawa_number(E,p), kodaira_symbol(E,p), reduction_type(E,p)) for p in bad_primes(E)]
The ℓ \ell ℓ -adic Galois representation has maximal image
for all primes ℓ \ell ℓ except those listed in the table below.
sage: rho = E.galois_representation(); [rho.image_type(p) for p in rho.non_surjective()]
magma: [GaloisRepresentation(E,p): p in PrimesUpTo(20)];
sage: gens = [[435, 88, 398, 77], [1021, 12, 6, 73], [11, 2, 1990, 2031], [1, 0, 12, 1], [334, 2029, 1371, 20], [1, 6, 6, 37], [10, 3, 381, 2032], [1, 12, 0, 1], [241, 12, 1446, 73], [2029, 12, 2028, 13]]
GL(2,Integers(2040)).subgroup(gens)
magma: Gens := [[435, 88, 398, 77], [1021, 12, 6, 73], [11, 2, 1990, 2031], [1, 0, 12, 1], [334, 2029, 1371, 20], [1, 6, 6, 37], [10, 3, 381, 2032], [1, 12, 0, 1], [241, 12, 1446, 73], [2029, 12, 2028, 13]];
sub<GL(2,Integers(2040))|Gens>;
The image H : = ρ E ( Gal ( Q ‾ / Q ) ) H:=\rho_E(\Gal(\overline{\Q}/\Q)) H : = ρ E ( G a l ( Q / Q ) ) of the adelic Galois representation has
level 2040 = 2 3 ⋅ 3 ⋅ 5 ⋅ 17 2040 = 2^{3} \cdot 3 \cdot 5 \cdot 17 2 0 4 0 = 2 3 ⋅ 3 ⋅ 5 ⋅ 1 7 , index 96 96 9 6 , genus 1 1 1 , and generators
( 435 88 398 77 ) , ( 1021 12 6 73 ) , ( 11 2 1990 2031 ) , ( 1 0 12 1 ) , ( 334 2029 1371 20 ) , ( 1 6 6 37 ) , ( 10 3 381 2032 ) , ( 1 12 0 1 ) , ( 241 12 1446 73 ) , ( 2029 12 2028 13 ) \left(\begin{array}{rr}
435 & 88 \\
398 & 77
\end{array}\right),\left(\begin{array}{rr}
1021 & 12 \\
6 & 73
\end{array}\right),\left(\begin{array}{rr}
11 & 2 \\
1990 & 2031
\end{array}\right),\left(\begin{array}{rr}
1 & 0 \\
12 & 1
\end{array}\right),\left(\begin{array}{rr}
334 & 2029 \\
1371 & 20
\end{array}\right),\left(\begin{array}{rr}
1 & 6 \\
6 & 37
\end{array}\right),\left(\begin{array}{rr}
10 & 3 \\
381 & 2032
\end{array}\right),\left(\begin{array}{rr}
1 & 12 \\
0 & 1
\end{array}\right),\left(\begin{array}{rr}
241 & 12 \\
1446 & 73
\end{array}\right),\left(\begin{array}{rr}
2029 & 12 \\
2028 & 13
\end{array}\right) ( 4 3 5 3 9 8 8 8 7 7 ) , ( 1 0 2 1 6 1 2 7 3 ) , ( 1 1 1 9 9 0 2 2 0 3 1 ) , ( 1 1 2 0 1 ) , ( 3 3 4 1 3 7 1 2 0 2 9 2 0 ) , ( 1 6 6 3 7 ) , ( 1 0 3 8 1 3 2 0 3 2 ) , ( 1 0 1 2 1 ) , ( 2 4 1 1 4 4 6 1 2 7 3 ) , ( 2 0 2 9 2 0 2 8 1 2 1 3 ) .
The torsion field K : = Q ( E [ 2040 ] ) K:=\Q(E[2040]) K : = Q ( E [ 2 0 4 0 ] ) is a degree-28877783040 28877783040 2 8 8 7 7 7 8 3 0 4 0 Galois extension of Q \Q Q with Gal ( K / Q ) \Gal(K/\Q) G a l ( K / Q ) isomorphic to the projection of H H H to GL 2 ( Z / 2040 Z ) \GL_2(\Z/2040\Z) GL 2 ( Z / 2 0 4 0 Z ) .
The table below list all primes ℓ \ell ℓ for which the Serre invariants associated to the mod-ℓ \ell ℓ Galois representation are exceptional.
ℓ \ell ℓ
Reduction type
Serre weight
Serre conductor
2 2 2
nonsplit multiplicative
4 4 4
45 = 3 2 ⋅ 5 45 = 3^{2} \cdot 5 4 5 = 3 2 ⋅ 5
3 3 3
additive
2 2 2
17 17 1 7
5 5 5
nonsplit multiplicative
6 6 6
306 = 2 ⋅ 3 2 ⋅ 17 306 = 2 \cdot 3^{2} \cdot 17 3 0 6 = 2 ⋅ 3 2 ⋅ 1 7
17 17 1 7
split multiplicative
18 18 1 8
90 = 2 ⋅ 3 2 ⋅ 5 90 = 2 \cdot 3^{2} \cdot 5 9 0 = 2 ⋅ 3 2 ⋅ 5
gp: ellisomat(E)
This curve has non-trivial cyclic isogenies of degree d d d for d = d= d =
2, 3 and 6.
Its isogeny class 1530d
consists of 4 curves linked by isogenies of
degrees dividing 6.
The minimal quadratic twist of this elliptic curve is
510g1 , its twist by − 3 -3 − 3 .
The number fields K K K of degree less than 24 such that
E ( K ) t o r s E(K)_{\rm tors} E ( K ) t o r s is strictly larger than E ( Q ) t o r s E(\Q)_{\rm tors} E ( Q ) t o r s
≅ Z / 2 Z \cong \Z/{2}\Z ≅ Z / 2 Z
are as follows:
We only show fields where the torsion growth is primitive .
For fields not in the database, click on the degree shown to reveal the defining polynomial.
An entry - indicates that the invariants are not computed because the reduction is additive.
p p p -adic regulators
Note: p p p -adic regulator data only exists for primes p ≥ 5 p\ge 5 p ≥ 5 of good ordinary
reduction.
Choose a prime...
11
13
19
23
29
37
41
43
53
61
67
71
73
79
83
89