Properties

Label 1530d1
Conductor 15301530
Discriminant 45507096000-45507096000
j-invariant 172368359962424000 \frac{1723683599}{62424000}
CM no
Rank 11
Torsion structure Z/2Z\Z/{2}\Z

Related objects

Downloads

Learn more

Show commands: Magma / Oscar / PariGP / SageMath

Minimal Weierstrass equation

Minimal Weierstrass equation

Simplified equation

y2+xy=x3x2+225x+10125y^2+xy=x^3-x^2+225x+10125 Copy content Toggle raw display (homogenize, simplify)
y2z+xyz=x3x2z+225xz2+10125z3y^2z+xyz=x^3-x^2z+225xz^2+10125z^3 Copy content Toggle raw display (dehomogenize, simplify)
y2=x3+3597x+651598y^2=x^3+3597x+651598 Copy content Toggle raw display (homogenize, minimize)

comment: Define the curve
 
sage: E = EllipticCurve([1, -1, 0, 225, 10125])
 
gp: E = ellinit([1, -1, 0, 225, 10125])
 
magma: E := EllipticCurve([1, -1, 0, 225, 10125]);
 
oscar: E = elliptic_curve([1, -1, 0, 225, 10125])
 
sage: E.short_weierstrass_model()
 
magma: WeierstrassModel(E);
 
oscar: short_weierstrass_model(E)
 

Mordell-Weil group structure

ZZ/2Z\Z \oplus \Z/{2}\Z

magma: MordellWeilGroup(E);
 

Mordell-Weil generators

PPh^(P)\hat{h}(P)Order
(6,105)(6, 105)0.608349030625646888533762607450.60834903062564688853376260745\infty
(18,9)(-18, 9)0022

Integral points

(18,9) \left(-18, 9\right) , (9,90) \left(-9, 90\right) , (9,81) \left(-9, -81\right) , (6,105) \left(6, 105\right) , (6,111) \left(6, -111\right) , (33,213) \left(33, 213\right) , (33,246) \left(33, -246\right) , (118,1233) \left(118, 1233\right) , (118,1351) \left(118, -1351\right) Copy content Toggle raw display

comment: Integral points
 
sage: E.integral_points()
 
magma: IntegralPoints(E);
 

Invariants

Conductor: NN  =  1530 1530  = 2325172 \cdot 3^{2} \cdot 5 \cdot 17
comment: Conductor
 
sage: E.conductor().factor()
 
gp: ellglobalred(E)[1]
 
magma: Conductor(E);
 
oscar: conductor(E)
 
Discriminant: Δ\Delta  =  45507096000-45507096000 = 1263953172-1 \cdot 2^{6} \cdot 3^{9} \cdot 5^{3} \cdot 17^{2}
comment: Discriminant
 
sage: E.discriminant().factor()
 
gp: E.disc
 
magma: Discriminant(E);
 
oscar: discriminant(E)
 
j-invariant: jj  =  172368359962424000 \frac{1723683599}{62424000}  = 26335311317210932^{-6} \cdot 3^{-3} \cdot 5^{-3} \cdot 11^{3} \cdot 17^{-2} \cdot 109^{3}
comment: j-invariant
 
sage: E.j_invariant().factor()
 
gp: E.j
 
magma: jInvariant(E);
 
oscar: j_invariant(E)
 
Endomorphism ring: End(E)\mathrm{End}(E) = Z\Z
Geometric endomorphism ring: End(EQ)\mathrm{End}(E_{\overline{\Q}})  =  Z\Z    (no potential complex multiplication)
sage: E.has_cm()
 
magma: HasComplexMultiplication(E);
 
Sato-Tate group: ST(E)\mathrm{ST}(E) = SU(2)\mathrm{SU}(2)
Faltings height: hFaltingsh_{\mathrm{Faltings}} ≈ 0.725006111808422256381697421610.72500611180842225638169742161
gp: ellheight(E)
 
magma: FaltingsHeight(E);
 
oscar: faltings_height(E)
 
Stable Faltings height: hstableh_{\mathrm{stable}} ≈ 0.175699967474367410684074803150.17569996747436741068407480315
magma: StableFaltingsHeight(E);
 
oscar: stable_faltings_height(E)
 
abcabc quality: QQ ≈ 0.97641952581437140.9764195258143714
Szpiro ratio: σm\sigma_{m} ≈ 4.3610589358336514.361058935833651

BSD invariants

Analytic rank: ranr_{\mathrm{an}} = 1 1
sage: E.analytic_rank()
 
gp: ellanalyticrank(E)
 
magma: AnalyticRank(E);
 
Mordell-Weil rank: rr = 1 1
comment: Rank
 
sage: E.rank()
 
gp: [lower,upper] = ellrank(E)
 
magma: Rank(E);
 
Regulator: Reg(E/Q)\mathrm{Reg}(E/\Q) ≈ 0.608349030625646888533762607450.60834903062564688853376260745
comment: Regulator
 
sage: E.regulator()
 
G = E.gen \\ if available
 
matdet(ellheightmatrix(E,G))
 
magma: Regulator(E);
 
Real period: Ω\Omega ≈ 0.858382254318235448942786619770.85838225431823544894278661977
comment: Real Period
 
sage: E.period_lattice().omega()
 
gp: if(E.disc>0,2,1)*E.omega[1]
 
magma: (Discriminant(E) gt 0 select 2 else 1) * RealPeriod(E);
 
Tamagawa product: pcp\prod_{p}c_p = 16 16  = 22212 2\cdot2^{2}\cdot1\cdot2
comment: Tamagawa numbers
 
sage: E.tamagawa_numbers()
 
gp: gr=ellglobalred(E); [[gr[4][i,1],gr[5][i][4]] | i<-[1..#gr[4][,1]]]
 
magma: TamagawaNumbers(E);
 
oscar: tamagawa_numbers(E)
 
Torsion order: #E(Q)tor\#E(\Q)_{\mathrm{tor}} = 22
comment: Torsion order
 
sage: E.torsion_order()
 
gp: elltors(E)[1]
 
magma: Order(TorsionSubgroup(E));
 
oscar: prod(torsion_structure(E)[1])
 
Special value: L(E,1) L'(E,1) ≈ 2.08878404928302413305103874472.0887840492830241330510387447
comment: Special L-value
 
r = E.rank();
 
E.lseries().dokchitser().derivative(1,r)/r.factorial()
 
gp: [r,L1r] = ellanalyticrank(E); L1r/r!
 
magma: Lr1 where r,Lr1 := AnalyticRank(E: Precision:=12);
 
Analytic order of Ш: Шan{}_{\mathrm{an}}  ≈  11    (rounded)
comment: Order of Sha
 
sage: E.sha().an_numerical()
 
magma: MordellWeilShaInformation(E);
 

BSD formula

2.088784049L(E,1)=#Ш(E/Q)ΩEReg(E/Q)pcp#E(Q)tor210.8583820.60834916222.088784049\displaystyle 2.088784049 \approx L'(E,1) = \frac{\# Ш(E/\Q)\cdot \Omega_E \cdot \mathrm{Reg}(E/\Q) \cdot \prod_p c_p}{\#E(\Q)_{\rm tor}^2} \approx \frac{1 \cdot 0.858382 \cdot 0.608349 \cdot 16}{2^2} \approx 2.088784049

# self-contained SageMath code snippet for the BSD formula (checks rank, computes analytic sha)
 
E = EllipticCurve(%s); r = E.rank(); ar = E.analytic_rank(); assert r == ar;
 
Lr1 = E.lseries().dokchitser().derivative(1,r)/r.factorial(); sha = E.sha().an_numerical();
 
omega = E.period_lattice().omega(); reg = E.regulator(); tam = E.tamagawa_product(); tor = E.torsion_order();
 
assert r == ar; print("analytic sha: " + str(RR(Lr1) * tor^2 / (omega * reg * tam)))
 
/* self-contained Magma code snippet for the BSD formula (checks rank, computes analytic sha) */
 
E := EllipticCurve(%s); r := Rank(E); ar,Lr1 := AnalyticRank(E: Precision := 12); assert r eq ar;
 
sha := MordellWeilShaInformation(E); omega := RealPeriod(E) * (Discriminant(E) gt 0 select 2 else 1);
 
reg := Regulator(E); tam := &*TamagawaNumbers(E); tor := #TorsionSubgroup(E);
 
assert r eq ar; print "analytic sha:", Lr1 * tor^2 / (omega * reg * tam);
 

Modular invariants

Modular form   1530.2.a.c

qq2+q4q5+2q7q8+q104q132q14+q16+q174q19+O(q20) q - q^{2} + q^{4} - q^{5} + 2 q^{7} - q^{8} + q^{10} - 4 q^{13} - 2 q^{14} + q^{16} + q^{17} - 4 q^{19} + O(q^{20}) Copy content Toggle raw display

comment: q-expansion of modular form
 
sage: E.q_eigenform(20)
 
\\ actual modular form, use for small N
 
[mf,F] = mffromell(E)
 
Ser(mfcoefs(mf,20),q)
 
\\ or just the series
 
Ser(ellan(E,20),q)*q
 
magma: ModularForm(E);
 

For more coefficients, see the Downloads section to the right.

Modular degree: 1152
comment: Modular degree
 
sage: E.modular_degree()
 
gp: ellmoddegree(E)
 
magma: ModularDegree(E);
 
Γ0(N) \Gamma_0(N) -optimal: yes
Manin constant: 1
comment: Manin constant
 
magma: ManinConstant(E);
 

Local data at primes of bad reduction

This elliptic curve is not semistable. There are 4 primes pp of bad reduction:

pp Tamagawa number Kodaira symbol Reduction type Root number ordp(N)\mathrm{ord}_p(N) ordp(Δ)\mathrm{ord}_p(\Delta) ordp(den(j))\mathrm{ord}_p(\mathrm{den}(j))
22 22 I6I_{6} nonsplit multiplicative 1 1 6 6
33 44 I3I_{3}^{*} additive -1 2 9 3
55 11 I3I_{3} nonsplit multiplicative 1 1 3 3
1717 22 I2I_{2} split multiplicative -1 1 2 2

comment: Local data
 
sage: E.local_data()
 
gp: ellglobalred(E)[5]
 
magma: [LocalInformation(E,p) : p in BadPrimes(E)];
 
oscar: [(p,tamagawa_number(E,p), kodaira_symbol(E,p), reduction_type(E,p)) for p in bad_primes(E)]
 

Galois representations

The \ell-adic Galois representation has maximal image for all primes \ell except those listed in the table below.

prime \ell mod-\ell image \ell-adic image
22 2B 2.3.0.1
33 3B.1.2 3.8.0.2

comment: mod p Galois image
 
sage: rho = E.galois_representation(); [rho.image_type(p) for p in rho.non_surjective()]
 
magma: [GaloisRepresentation(E,p): p in PrimesUpTo(20)];
 

gens = [[435, 88, 398, 77], [1021, 12, 6, 73], [11, 2, 1990, 2031], [1, 0, 12, 1], [334, 2029, 1371, 20], [1, 6, 6, 37], [10, 3, 381, 2032], [1, 12, 0, 1], [241, 12, 1446, 73], [2029, 12, 2028, 13]]
 
GL(2,Integers(2040)).subgroup(gens)
 
Gens := [[435, 88, 398, 77], [1021, 12, 6, 73], [11, 2, 1990, 2031], [1, 0, 12, 1], [334, 2029, 1371, 20], [1, 6, 6, 37], [10, 3, 381, 2032], [1, 12, 0, 1], [241, 12, 1446, 73], [2029, 12, 2028, 13]];
 
sub<GL(2,Integers(2040))|Gens>;
 

The image H:=ρE(Gal(Q/Q))H:=\rho_E(\Gal(\overline{\Q}/\Q)) of the adelic Galois representation has level 2040=233517 2040 = 2^{3} \cdot 3 \cdot 5 \cdot 17 , index 9696, genus 11, and generators

(4358839877),(102112673),(11219902031),(10121),(3342029137120),(16637),(1033812032),(11201),(24112144673),(202912202813)\left(\begin{array}{rr} 435 & 88 \\ 398 & 77 \end{array}\right),\left(\begin{array}{rr} 1021 & 12 \\ 6 & 73 \end{array}\right),\left(\begin{array}{rr} 11 & 2 \\ 1990 & 2031 \end{array}\right),\left(\begin{array}{rr} 1 & 0 \\ 12 & 1 \end{array}\right),\left(\begin{array}{rr} 334 & 2029 \\ 1371 & 20 \end{array}\right),\left(\begin{array}{rr} 1 & 6 \\ 6 & 37 \end{array}\right),\left(\begin{array}{rr} 10 & 3 \\ 381 & 2032 \end{array}\right),\left(\begin{array}{rr} 1 & 12 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 241 & 12 \\ 1446 & 73 \end{array}\right),\left(\begin{array}{rr} 2029 & 12 \\ 2028 & 13 \end{array}\right).

Input positive integer mm to see the generators of the reduction of HH to GL2(Z/mZ)\mathrm{GL}_2(\Z/m\Z):

The torsion field K:=Q(E[2040])K:=\Q(E[2040]) is a degree-2887778304028877783040 Galois extension of Q\Q with Gal(K/Q)\Gal(K/\Q) isomorphic to the projection of HH to GL2(Z/2040Z)\GL_2(\Z/2040\Z).

The table below list all primes \ell for which the Serre invariants associated to the mod-\ell Galois representation are exceptional.

\ell Reduction type Serre weight Serre conductor
22 nonsplit multiplicative 44 45=325 45 = 3^{2} \cdot 5
33 additive 22 17 17
55 nonsplit multiplicative 66 306=23217 306 = 2 \cdot 3^{2} \cdot 17
1717 split multiplicative 1818 90=2325 90 = 2 \cdot 3^{2} \cdot 5

Isogenies

gp: ellisomat(E)
 

This curve has non-trivial cyclic isogenies of degree dd for d=d= 2, 3 and 6.
Its isogeny class 1530d consists of 4 curves linked by isogenies of degrees dividing 6.

Twists

The minimal quadratic twist of this elliptic curve is 510g1, its twist by 3-3.

Growth of torsion in number fields

The number fields KK of degree less than 24 such that E(K)torsE(K)_{\rm tors} is strictly larger than E(Q)torsE(\Q)_{\rm tors} Z/2Z\cong \Z/{2}\Z are as follows:

[K:Q][K:\Q] KK E(K)torsE(K)_{\rm tors} Base change curve
22 Q(15)\Q(\sqrt{-15}) Z/2ZZ/2Z\Z/2\Z \oplus \Z/2\Z not in database
22 Q(3)\Q(\sqrt{-3}) Z/6Z\Z/6\Z 2.0.3.1-86700.1-g2
33 3.1.867.1 Z/6Z\Z/6\Z not in database
44 4.2.277440.4 Z/4Z\Z/4\Z not in database
44 Q(3,5)\Q(\sqrt{-3}, \sqrt{5}) Z/2ZZ/6Z\Z/2\Z \oplus \Z/6\Z not in database
66 6.0.2255067.2 Z/3ZZ/6Z\Z/3\Z \oplus \Z/6\Z not in database
66 6.0.281883375.1 Z/2ZZ/6Z\Z/2\Z \oplus \Z/6\Z not in database
88 8.0.3370896000000.10 Z/2ZZ/4Z\Z/2\Z \oplus \Z/4\Z not in database
88 8.0.17318914560000.4 Z/2ZZ/4Z\Z/2\Z \oplus \Z/4\Z not in database
88 8.0.692756582400.33 Z/12Z\Z/12\Z not in database
1212 deg 12 Z/6ZZ/6Z\Z/6\Z \oplus \Z/6\Z not in database
1212 deg 12 Z/12Z\Z/12\Z not in database
1616 deg 16 Z/8Z\Z/8\Z not in database
1616 deg 16 Z/2ZZ/12Z\Z/2\Z \oplus \Z/12\Z not in database
1616 deg 16 Z/2ZZ/12Z\Z/2\Z \oplus \Z/12\Z not in database
1818 18.0.38778658112119365306896643000000000000.1 Z/18Z\Z/18\Z not in database

We only show fields where the torsion growth is primitive. For fields not in the database, click on the degree shown to reveal the defining polynomial.

Iwasawa invariants

pp 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47
Reduction type nonsplit add nonsplit ord ss ord split ord ss ord ord ord ss ord ss
λ\lambda-invariant(s) 5 - 1 1 1,1 1 2 3 1,1 1 1 1 1,1 1 1,1
μ\mu-invariant(s) 0 - 0 0 0,0 0 0 0 0,0 0 0 0 0,0 0 0,0

An entry - indicates that the invariants are not computed because the reduction is additive.

pp-adic regulators

Note: pp-adic regulator data only exists for primes p5p\ge 5 of good ordinary reduction.