Properties

Label 1530j1
Conductor 15301530
Discriminant 6242400000-6242400000
j-invariant 1847284083231200000 -\frac{1847284083}{231200000}
CM no
Rank 11
Torsion structure Z/2Z\Z/{2}\Z

Related objects

Downloads

Learn more

Show commands: Magma / Oscar / PariGP / SageMath

Minimal Weierstrass equation

Minimal Weierstrass equation

Simplified equation

y2+xy+y=x3x277x+3829y^2+xy+y=x^3-x^2-77x+3829 Copy content Toggle raw display (homogenize, simplify)
y2z+xyz+yz2=x3x2z77xz2+3829z3y^2z+xyz+yz^2=x^3-x^2z-77xz^2+3829z^3 Copy content Toggle raw display (dehomogenize, simplify)
y2=x31227x+243846y^2=x^3-1227x+243846 Copy content Toggle raw display (homogenize, minimize)

comment: Define the curve
 
sage: E = EllipticCurve([1, -1, 1, -77, 3829])
 
gp: E = ellinit([1, -1, 1, -77, 3829])
 
magma: E := EllipticCurve([1, -1, 1, -77, 3829]);
 
oscar: E = elliptic_curve([1, -1, 1, -77, 3829])
 
sage: E.short_weierstrass_model()
 
magma: WeierstrassModel(E);
 
oscar: short_weierstrass_model(E)
 

Mordell-Weil group structure

ZZ/2Z\Z \oplus \Z/{2}\Z

magma: MordellWeilGroup(E);
 

Mordell-Weil generators

PPh^(P)\hat{h}(P)Order
(7,56)(7, 56)0.0855267144367776746457323469940.085526714436777674645732346994\infty
(17,8)(-17, 8)0022

Integral points

(17,8) \left(-17, 8\right) , (13,56) \left(-13, 56\right) , (13,44) \left(-13, -44\right) , (11,62) \left(-11, 62\right) , (11,52) \left(-11, -52\right) , (7,56) \left(7, 56\right) , (7,64) \left(7, -64\right) , (17,76) \left(17, 76\right) , (17,94) \left(17, -94\right) , (37,206) \left(37, 206\right) , (37,244) \left(37, -244\right) , (47,296) \left(47, 296\right) , (47,344) \left(47, -344\right) , (119,1232) \left(119, 1232\right) , (119,1352) \left(119, -1352\right) , (187,2456) \left(187, 2456\right) , (187,2644) \left(187, -2644\right) , (2887,153656) \left(2887, 153656\right) , (2887,156544) \left(2887, -156544\right) Copy content Toggle raw display

comment: Integral points
 
sage: E.integral_points()
 
magma: IntegralPoints(E);
 

Invariants

Conductor: NN  =  1530 1530  = 2325172 \cdot 3^{2} \cdot 5 \cdot 17
comment: Conductor
 
sage: E.conductor().factor()
 
gp: ellglobalred(E)[1]
 
magma: Conductor(E);
 
oscar: conductor(E)
 
Discriminant: Δ\Delta  =  6242400000-6242400000 = 1283355172-1 \cdot 2^{8} \cdot 3^{3} \cdot 5^{5} \cdot 17^{2}
comment: Discriminant
 
sage: E.discriminant().factor()
 
gp: E.disc
 
magma: Discriminant(E);
 
oscar: discriminant(E)
 
j-invariant: jj  =  1847284083231200000 -\frac{1847284083}{231200000}  = 12833551724093-1 \cdot 2^{-8} \cdot 3^{3} \cdot 5^{-5} \cdot 17^{-2} \cdot 409^{3}
comment: j-invariant
 
sage: E.j_invariant().factor()
 
gp: E.j
 
magma: jInvariant(E);
 
oscar: j_invariant(E)
 
Endomorphism ring: End(E)\mathrm{End}(E) = Z\Z
Geometric endomorphism ring: End(EQ)\mathrm{End}(E_{\overline{\Q}})  =  Z\Z    (no potential complex multiplication)
sage: E.has_cm()
 
magma: HasComplexMultiplication(E);
 
Sato-Tate group: ST(E)\mathrm{ST}(E) = SU(2)\mathrm{SU}(2)
Faltings height: hFaltingsh_{\mathrm{Faltings}} ≈ 0.559003675861754515209261647830.55900367586175451520926164783
gp: ellheight(E)
 
magma: FaltingsHeight(E);
 
oscar: faltings_height(E)
 
Stable Faltings height: hstableh_{\mathrm{stable}} ≈ 0.284350603694727092360450338600.28435060369472709236045033860
magma: StableFaltingsHeight(E);
 
oscar: stable_faltings_height(E)
 
abcabc quality: QQ ≈ 1.07629078860637481.0762907886063748
Szpiro ratio: σm\sigma_{m} ≈ 4.0929864296019394.092986429601939

BSD invariants

Analytic rank: ranr_{\mathrm{an}} = 1 1
sage: E.analytic_rank()
 
gp: ellanalyticrank(E)
 
magma: AnalyticRank(E);
 
Mordell-Weil rank: rr = 1 1
comment: Rank
 
sage: E.rank()
 
gp: [lower,upper] = ellrank(E)
 
magma: Rank(E);
 
Regulator: Reg(E/Q)\mathrm{Reg}(E/\Q) ≈ 0.0855267144367776746457323469940.085526714436777674645732346994
comment: Regulator
 
sage: E.regulator()
 
G = E.gen \\ if available
 
matdet(ellheightmatrix(E,G))
 
magma: Regulator(E);
 
Real period: Ω\Omega ≈ 1.09909748806002210609809386881.0990974880600221060980938688
comment: Real Period
 
sage: E.period_lattice().omega()
 
gp: if(E.disc>0,2,1)*E.omega[1]
 
magma: (Discriminant(E) gt 0 select 2 else 1) * RealPeriod(E);
 
Tamagawa product: pcp\prod_{p}c_p = 160 160  = 23252 2^{3}\cdot2\cdot5\cdot2
comment: Tamagawa numbers
 
sage: E.tamagawa_numbers()
 
gp: gr=ellglobalred(E); [[gr[4][i,1],gr[5][i][4]] | i<-[1..#gr[4][,1]]]
 
magma: TamagawaNumbers(E);
 
oscar: tamagawa_numbers(E)
 
Torsion order: #E(Q)tor\#E(\Q)_{\mathrm{tor}} = 22
comment: Torsion order
 
sage: E.torsion_order()
 
gp: elltors(E)[1]
 
magma: Order(TorsionSubgroup(E));
 
oscar: prod(torsion_structure(E)[1])
 
Special value: L(E,1) L'(E,1) ≈ 3.76008787997956682183005434773.7600878799795668218300543477
comment: Special L-value
 
r = E.rank();
 
E.lseries().dokchitser().derivative(1,r)/r.factorial()
 
gp: [r,L1r] = ellanalyticrank(E); L1r/r!
 
magma: Lr1 where r,Lr1 := AnalyticRank(E: Precision:=12);
 
Analytic order of Ш: Шan{}_{\mathrm{an}}  ≈  11    (rounded)
comment: Order of Sha
 
sage: E.sha().an_numerical()
 
magma: MordellWeilShaInformation(E);
 

BSD formula

3.760087880L(E,1)=#Ш(E/Q)ΩEReg(E/Q)pcp#E(Q)tor211.0990970.085527160223.760087880\displaystyle 3.760087880 \approx L'(E,1) = \frac{\# Ш(E/\Q)\cdot \Omega_E \cdot \mathrm{Reg}(E/\Q) \cdot \prod_p c_p}{\#E(\Q)_{\rm tor}^2} \approx \frac{1 \cdot 1.099097 \cdot 0.085527 \cdot 160}{2^2} \approx 3.760087880

# self-contained SageMath code snippet for the BSD formula (checks rank, computes analytic sha)
 
E = EllipticCurve(%s); r = E.rank(); ar = E.analytic_rank(); assert r == ar;
 
Lr1 = E.lseries().dokchitser().derivative(1,r)/r.factorial(); sha = E.sha().an_numerical();
 
omega = E.period_lattice().omega(); reg = E.regulator(); tam = E.tamagawa_product(); tor = E.torsion_order();
 
assert r == ar; print("analytic sha: " + str(RR(Lr1) * tor^2 / (omega * reg * tam)))
 
/* self-contained Magma code snippet for the BSD formula (checks rank, computes analytic sha) */
 
E := EllipticCurve(%s); r := Rank(E); ar,Lr1 := AnalyticRank(E: Precision := 12); assert r eq ar;
 
sha := MordellWeilShaInformation(E); omega := RealPeriod(E) * (Discriminant(E) gt 0 select 2 else 1);
 
reg := Regulator(E); tam := &*TamagawaNumbers(E); tor := #TorsionSubgroup(E);
 
assert r eq ar; print "analytic sha:", Lr1 * tor^2 / (omega * reg * tam);
 

Modular invariants

Modular form   1530.2.a.m

q+q2+q4+q54q7+q8+q102q116q134q14+q16q17+O(q20) q + q^{2} + q^{4} + q^{5} - 4 q^{7} + q^{8} + q^{10} - 2 q^{11} - 6 q^{13} - 4 q^{14} + q^{16} - q^{17} + O(q^{20}) Copy content Toggle raw display

comment: q-expansion of modular form
 
sage: E.q_eigenform(20)
 
\\ actual modular form, use for small N
 
[mf,F] = mffromell(E)
 
Ser(mfcoefs(mf,20),q)
 
\\ or just the series
 
Ser(ellan(E,20),q)*q
 
magma: ModularForm(E);
 

For more coefficients, see the Downloads section to the right.

Modular degree: 1280
comment: Modular degree
 
sage: E.modular_degree()
 
gp: ellmoddegree(E)
 
magma: ModularDegree(E);
 
Γ0(N) \Gamma_0(N) -optimal: yes
Manin constant: 1
comment: Manin constant
 
magma: ManinConstant(E);
 

Local data at primes of bad reduction

This elliptic curve is not semistable. There are 4 primes pp of bad reduction:

pp Tamagawa number Kodaira symbol Reduction type Root number ordp(N)\mathrm{ord}_p(N) ordp(Δ)\mathrm{ord}_p(\Delta) ordp(den(j))\mathrm{ord}_p(\mathrm{den}(j))
22 88 I8I_{8} split multiplicative -1 1 8 8
33 22 IIIIII additive 1 2 3 0
55 55 I5I_{5} split multiplicative -1 1 5 5
1717 22 I2I_{2} nonsplit multiplicative 1 1 2 2

comment: Local data
 
sage: E.local_data()
 
gp: ellglobalred(E)[5]
 
magma: [LocalInformation(E,p) : p in BadPrimes(E)];
 
oscar: [(p,tamagawa_number(E,p), kodaira_symbol(E,p), reduction_type(E,p)) for p in bad_primes(E)]
 

Galois representations

The \ell-adic Galois representation has maximal image for all primes \ell except those listed in the table below.

prime \ell mod-\ell image \ell-adic image
22 2B 2.3.0.1

comment: mod p Galois image
 
sage: rho = E.galois_representation(); [rho.image_type(p) for p in rho.non_surjective()]
 
magma: [GaloisRepresentation(E,p): p in PrimesUpTo(20)];
 

gens = [[1, 0, 4, 1], [3, 4, 8, 11], [1, 2, 2, 5], [241, 4, 482, 9], [614, 1, 203, 0], [1, 4, 0, 1], [769, 256, 764, 255], [1017, 4, 1016, 5], [344, 1, 679, 0]]
 
GL(2,Integers(1020)).subgroup(gens)
 
Gens := [[1, 0, 4, 1], [3, 4, 8, 11], [1, 2, 2, 5], [241, 4, 482, 9], [614, 1, 203, 0], [1, 4, 0, 1], [769, 256, 764, 255], [1017, 4, 1016, 5], [344, 1, 679, 0]];
 
sub<GL(2,Integers(1020))|Gens>;
 

The image H:=ρE(Gal(Q/Q))H:=\rho_E(\Gal(\overline{\Q}/\Q)) of the adelic Galois representation has level 1020=223517 1020 = 2^{2} \cdot 3 \cdot 5 \cdot 17 , index 1212, genus 00, and generators

(1041),(34811),(1225),(24144829),(61412030),(1401),(769256764255),(1017410165),(34416790)\left(\begin{array}{rr} 1 & 0 \\ 4 & 1 \end{array}\right),\left(\begin{array}{rr} 3 & 4 \\ 8 & 11 \end{array}\right),\left(\begin{array}{rr} 1 & 2 \\ 2 & 5 \end{array}\right),\left(\begin{array}{rr} 241 & 4 \\ 482 & 9 \end{array}\right),\left(\begin{array}{rr} 614 & 1 \\ 203 & 0 \end{array}\right),\left(\begin{array}{rr} 1 & 4 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 769 & 256 \\ 764 & 255 \end{array}\right),\left(\begin{array}{rr} 1017 & 4 \\ 1016 & 5 \end{array}\right),\left(\begin{array}{rr} 344 & 1 \\ 679 & 0 \end{array}\right).

Input positive integer mm to see the generators of the reduction of HH to GL2(Z/mZ)\mathrm{GL}_2(\Z/m\Z):

The torsion field K:=Q(E[1020])K:=\Q(E[1020]) is a degree-1443889152014438891520 Galois extension of Q\Q with Gal(K/Q)\Gal(K/\Q) isomorphic to the projection of HH to GL2(Z/1020Z)\GL_2(\Z/1020\Z).

The table below list all primes \ell for which the Serre invariants associated to the mod-\ell Galois representation are exceptional.

\ell Reduction type Serre weight Serre conductor
22 split multiplicative 44 15=35 15 = 3 \cdot 5
33 additive 66 170=2517 170 = 2 \cdot 5 \cdot 17
55 split multiplicative 66 306=23217 306 = 2 \cdot 3^{2} \cdot 17
1717 nonsplit multiplicative 1818 90=2325 90 = 2 \cdot 3^{2} \cdot 5

Isogenies

gp: ellisomat(E)
 

This curve has non-trivial cyclic isogenies of degree dd for d=d= 2.
Its isogeny class 1530j consists of 2 curves linked by isogenies of degree 2.

Twists

The minimal quadratic twist of this elliptic curve is 1530a1, its twist by 3-3.

Growth of torsion in number fields

The number fields KK of degree less than 24 such that E(K)torsE(K)_{\rm tors} is strictly larger than E(Q)torsE(\Q)_{\rm tors} Z/2Z\cong \Z/{2}\Z are as follows:

[K:Q][K:\Q] KK E(K)torsE(K)_{\rm tors} Base change curve
22 Q(15)\Q(\sqrt{-15}) Z/2ZZ/2Z\Z/2\Z \oplus \Z/2\Z not in database
44 4.2.624240.1 Z/4Z\Z/4\Z not in database
88 8.0.52670250000.7 Z/2ZZ/4Z\Z/2\Z \oplus \Z/4\Z not in database
88 8.0.9741889440000.3 Z/2ZZ/4Z\Z/2\Z \oplus \Z/4\Z not in database
88 8.2.1826604270000.1 Z/6Z\Z/6\Z not in database
1616 deg 16 Z/8Z\Z/8\Z not in database
1616 deg 16 Z/2ZZ/6Z\Z/2\Z \oplus \Z/6\Z not in database

We only show fields where the torsion growth is primitive. For fields not in the database, click on the degree shown to reveal the defining polynomial.

Iwasawa invariants

pp 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47
Reduction type split add split ord ord ord nonsplit ss ss ord ss ord ord ord ord
λ\lambda-invariant(s) 5 - 2 1 1 1 1 1,1 1,1 1 1,1 1 1 1 1
μ\mu-invariant(s) 0 - 0 0 0 0 0 0,0 0,0 0 0,0 0 0 0 0

An entry - indicates that the invariants are not computed because the reduction is additive.

pp-adic regulators

Note: pp-adic regulator data only exists for primes p5p\ge 5 of good ordinary reduction.