Properties

Label 153c
Number of curves 44
Conductor 153153
CM no
Rank 00
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
E = EllipticCurve("c1")
 
E.isogeny_class()
 

Elliptic curves in class 153c

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
153.c3 153c1 [1,1,0,6,1][1, -1, 0, -6, -1] 35937/1735937/17 1239312393 [2][2] 88 0.52048-0.52048 Γ0(N)\Gamma_0(N)-optimal
153.c2 153c2 [1,1,0,51,152][1, -1, 0, -51, 152] 20346417/28920346417/289 210681210681 [2,2][2, 2] 1616 0.17390-0.17390  
153.c1 153c3 [1,1,0,816,9179][1, -1, 0, -816, 9179] 82483294977/1782483294977/17 1239312393 [2][2] 3232 0.172670.17267  
153.c4 153c4 [1,1,0,6,377][1, -1, 0, -6, 377] 35937/83521-35937/83521 60886809-60886809 [2][2] 3232 0.172670.17267  

Rank

sage: E.rank()
 

The elliptic curves in class 153c have rank 00.

Complex multiplication

The elliptic curves in class 153c do not have complex multiplication.

Modular form 153.2.a.c

sage: E.q_eigenform(10)
 
q+q2q4+2q5+4q73q8+2q102q13+4q14q16q174q19+O(q20)q + q^{2} - q^{4} + 2 q^{5} + 4 q^{7} - 3 q^{8} + 2 q^{10} - 2 q^{13} + 4 q^{14} - q^{16} - q^{17} - 4 q^{19} + O(q^{20}) Copy content Toggle raw display

Isogeny matrix

sage: E.isogeny_class().matrix()
 

The i,ji,j entry is the smallest degree of a cyclic isogeny between the ii-th and jj-th curve in the isogeny class, in the Cremona numbering.

(1244212242144241)\left(\begin{array}{rrrr} 1 & 2 & 4 & 4 \\ 2 & 1 & 2 & 2 \\ 4 & 2 & 1 & 4 \\ 4 & 2 & 4 & 1 \end{array}\right)

Isogeny graph

sage: E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with Cremona labels.