Properties

Label 15600bf
Number of curves $4$
Conductor $15600$
CM no
Rank $1$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
E = EllipticCurve("bf1")
 
E.isogeny_class()
 

Elliptic curves in class 15600bf

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
15600.p3 15600bf1 \([0, -1, 0, -5408, -146688]\) \(273359449/9360\) \(599040000000\) \([2]\) \(18432\) \(1.0318\) \(\Gamma_0(N)\)-optimal
15600.p2 15600bf2 \([0, -1, 0, -13408, 397312]\) \(4165509529/1368900\) \(87609600000000\) \([2, 2]\) \(36864\) \(1.3783\)  
15600.p1 15600bf3 \([0, -1, 0, -193408, 32797312]\) \(12501706118329/2570490\) \(164511360000000\) \([4]\) \(73728\) \(1.7249\)  
15600.p4 15600bf4 \([0, -1, 0, 38592, 2685312]\) \(99317171591/106616250\) \(-6823440000000000\) \([2]\) \(73728\) \(1.7249\)  

Rank

sage: E.rank()
 

The elliptic curves in class 15600bf have rank \(1\).

Complex multiplication

The elliptic curves in class 15600bf do not have complex multiplication.

Modular form 15600.2.a.bf

sage: E.q_eigenform(10)
 
\(q - q^{3} + q^{9} + q^{13} + 6 q^{17} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

sage: E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the Cremona numbering.

\(\left(\begin{array}{rrrr} 1 & 2 & 4 & 4 \\ 2 & 1 & 2 & 2 \\ 4 & 2 & 1 & 4 \\ 4 & 2 & 4 & 1 \end{array}\right)\)

Isogeny graph

sage: E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with Cremona labels.