Properties

Label 1560e4
Conductor 15601560
Discriminant 15600000000-15600000000
j-invariant 2619879724415234375 \frac{26198797244}{15234375}
CM no
Rank 11
Torsion structure Z/2Z\Z/{2}\Z

Related objects

Downloads

Learn more

Show commands: Magma / Oscar / PariGP / SageMath

Minimal Weierstrass equation

Minimal Weierstrass equation

Simplified equation

y2=x3+x2+624x+624y^2=x^3+x^2+624x+624 Copy content Toggle raw display (homogenize, simplify)
y2z=x3+x2z+624xz2+624z3y^2z=x^3+x^2z+624xz^2+624z^3 Copy content Toggle raw display (dehomogenize, simplify)
y2=x3+50517x+303318y^2=x^3+50517x+303318 Copy content Toggle raw display (homogenize, minimize)

comment: Define the curve
 
sage: E = EllipticCurve([0, 1, 0, 624, 624])
 
gp: E = ellinit([0, 1, 0, 624, 624])
 
magma: E := EllipticCurve([0, 1, 0, 624, 624]);
 
oscar: E = elliptic_curve([0, 1, 0, 624, 624])
 
sage: E.short_weierstrass_model()
 
magma: WeierstrassModel(E);
 
oscar: short_weierstrass_model(E)
 

Mordell-Weil group structure

ZZ/2Z\Z \oplus \Z/{2}\Z

magma: MordellWeilGroup(E);
 

Mordell-Weil generators

PPh^(P)\hat{h}(P)Order
(35,258)(35, 258)3.93528540763095644635417458773.9352854076309564463541745877\infty
(1,0)(-1, 0)0022

Integral points

(1,0) \left(-1, 0\right) , (35,±258)(35,\pm 258) Copy content Toggle raw display

comment: Integral points
 
sage: E.integral_points()
 
magma: IntegralPoints(E);
 

Invariants

Conductor: NN  =  1560 1560  = 2335132^{3} \cdot 3 \cdot 5 \cdot 13
comment: Conductor
 
sage: E.conductor().factor()
 
gp: ellglobalred(E)[1]
 
magma: Conductor(E);
 
oscar: conductor(E)
 
Discriminant: Δ\Delta  =  15600000000-15600000000 = 121035813-1 \cdot 2^{10} \cdot 3 \cdot 5^{8} \cdot 13
comment: Discriminant
 
sage: E.discriminant().factor()
 
gp: E.disc
 
magma: Discriminant(E);
 
oscar: discriminant(E)
 
j-invariant: jj  =  2619879724415234375 \frac{26198797244}{15234375}  = 223158131187132^{2} \cdot 3^{-1} \cdot 5^{-8} \cdot 13^{-1} \cdot 1871^{3}
comment: j-invariant
 
sage: E.j_invariant().factor()
 
gp: E.j
 
magma: jInvariant(E);
 
oscar: j_invariant(E)
 
Endomorphism ring: End(E)\mathrm{End}(E) = Z\Z
Geometric endomorphism ring: End(EQ)\mathrm{End}(E_{\overline{\Q}})  =  Z\Z    (no potential complex multiplication)
sage: E.has_cm()
 
magma: HasComplexMultiplication(E);
 
Sato-Tate group: ST(E)\mathrm{ST}(E) = SU(2)\mathrm{SU}(2)
Faltings height: hFaltingsh_{\mathrm{Faltings}} ≈ 0.645320225212027493681620708110.64532022521202749368162070811
gp: ellheight(E)
 
magma: FaltingsHeight(E);
 
oscar: faltings_height(E)
 
Stable Faltings height: hstableh_{\mathrm{stable}} ≈ 0.0676975747454064025005939402280.067697574745406402500593940228
magma: StableFaltingsHeight(E);
 
oscar: stable_faltings_height(E)
 
abcabc quality: QQ ≈ 1.02139532010210331.0213953201021033
Szpiro ratio: σm\sigma_{m} ≈ 4.2054673711724444.205467371172444

BSD invariants

Analytic rank: ranr_{\mathrm{an}} = 1 1
sage: E.analytic_rank()
 
gp: ellanalyticrank(E)
 
magma: AnalyticRank(E);
 
Mordell-Weil rank: rr = 1 1
comment: Rank
 
sage: E.rank()
 
gp: [lower,upper] = ellrank(E)
 
magma: Rank(E);
 
Regulator: Reg(E/Q)\mathrm{Reg}(E/\Q) ≈ 3.93528540763095644635417458773.9352854076309564463541745877
comment: Regulator
 
sage: E.regulator()
 
G = E.gen \\ if available
 
matdet(ellheightmatrix(E,G))
 
magma: Regulator(E);
 
Real period: Ω\Omega ≈ 0.748560095924413609102094169450.74856009592441360910209416945
comment: Real Period
 
sage: E.period_lattice().omega()
 
gp: if(E.disc>0,2,1)*E.omega[1]
 
magma: (Discriminant(E) gt 0 select 2 else 1) * RealPeriod(E);
 
Tamagawa product: pcp\prod_{p}c_p = 4 4  = 2121 2\cdot1\cdot2\cdot1
comment: Tamagawa numbers
 
sage: E.tamagawa_numbers()
 
gp: gr=ellglobalred(E); [[gr[4][i,1],gr[5][i][4]] | i<-[1..#gr[4][,1]]]
 
magma: TamagawaNumbers(E);
 
oscar: tamagawa_numbers(E)
 
Torsion order: #E(Q)tor\#E(\Q)_{\mathrm{tor}} = 22
comment: Torsion order
 
sage: E.torsion_order()
 
gp: elltors(E)[1]
 
magma: Order(TorsionSubgroup(E));
 
oscar: prod(torsion_structure(E)[1])
 
Special value: L(E,1) L'(E,1) ≈ 2.94579762222617386893868161702.9457976222261738689386816170
comment: Special L-value
 
r = E.rank();
 
E.lseries().dokchitser().derivative(1,r)/r.factorial()
 
gp: [r,L1r] = ellanalyticrank(E); L1r/r!
 
magma: Lr1 where r,Lr1 := AnalyticRank(E: Precision:=12);
 
Analytic order of Ш: Шan{}_{\mathrm{an}}  ≈  11    (rounded)
comment: Order of Sha
 
sage: E.sha().an_numerical()
 
magma: MordellWeilShaInformation(E);
 

BSD formula

2.945797622L(E,1)=#Ш(E/Q)ΩEReg(E/Q)pcp#E(Q)tor210.7485603.9352854222.945797622\displaystyle 2.945797622 \approx L'(E,1) = \frac{\# Ш(E/\Q)\cdot \Omega_E \cdot \mathrm{Reg}(E/\Q) \cdot \prod_p c_p}{\#E(\Q)_{\rm tor}^2} \approx \frac{1 \cdot 0.748560 \cdot 3.935285 \cdot 4}{2^2} \approx 2.945797622

# self-contained SageMath code snippet for the BSD formula (checks rank, computes analytic sha)
 
E = EllipticCurve(%s); r = E.rank(); ar = E.analytic_rank(); assert r == ar;
 
Lr1 = E.lseries().dokchitser().derivative(1,r)/r.factorial(); sha = E.sha().an_numerical();
 
omega = E.period_lattice().omega(); reg = E.regulator(); tam = E.tamagawa_product(); tor = E.torsion_order();
 
assert r == ar; print("analytic sha: " + str(RR(Lr1) * tor^2 / (omega * reg * tam)))
 
/* self-contained Magma code snippet for the BSD formula (checks rank, computes analytic sha) */
 
E := EllipticCurve(%s); r := Rank(E); ar,Lr1 := AnalyticRank(E: Precision := 12); assert r eq ar;
 
sha := MordellWeilShaInformation(E); omega := RealPeriod(E) * (Discriminant(E) gt 0 select 2 else 1);
 
reg := Regulator(E); tam := &*TamagawaNumbers(E); tor := #TorsionSubgroup(E);
 
assert r eq ar; print "analytic sha:", Lr1 * tor^2 / (omega * reg * tam);
 

Modular invariants

Modular form   1560.2.a.g

q+q3q54q7+q9+4q11+q13q156q17+O(q20) q + q^{3} - q^{5} - 4 q^{7} + q^{9} + 4 q^{11} + q^{13} - q^{15} - 6 q^{17} + O(q^{20}) Copy content Toggle raw display

comment: q-expansion of modular form
 
sage: E.q_eigenform(20)
 
\\ actual modular form, use for small N
 
[mf,F] = mffromell(E)
 
Ser(mfcoefs(mf,20),q)
 
\\ or just the series
 
Ser(ellan(E,20),q)*q
 
magma: ModularForm(E);
 

For more coefficients, see the Downloads section to the right.

Modular degree: 1536
comment: Modular degree
 
sage: E.modular_degree()
 
gp: ellmoddegree(E)
 
magma: ModularDegree(E);
 
Γ0(N) \Gamma_0(N) -optimal: no
Manin constant: 1
comment: Manin constant
 
magma: ManinConstant(E);
 

Local data at primes of bad reduction

This elliptic curve is not semistable. There are 4 primes pp of bad reduction:

pp Tamagawa number Kodaira symbol Reduction type Root number ordp(N)\mathrm{ord}_p(N) ordp(Δ)\mathrm{ord}_p(\Delta) ordp(den(j))\mathrm{ord}_p(\mathrm{den}(j))
22 22 IIIIII^{*} additive 1 3 10 0
33 11 I1I_{1} split multiplicative -1 1 1 1
55 22 I8I_{8} nonsplit multiplicative 1 1 8 8
1313 11 I1I_{1} split multiplicative -1 1 1 1

comment: Local data
 
sage: E.local_data()
 
gp: ellglobalred(E)[5]
 
magma: [LocalInformation(E,p) : p in BadPrimes(E)];
 
oscar: [(p,tamagawa_number(E,p), kodaira_symbol(E,p), reduction_type(E,p)) for p in bad_primes(E)]
 

Galois representations

The \ell-adic Galois representation has maximal image for all primes \ell except those listed in the table below.

prime \ell mod-\ell image \ell-adic image
22 2B 8.12.0.6

comment: mod p Galois image
 
sage: rho = E.galois_representation(); [rho.image_type(p) for p in rho.non_surjective()]
 
magma: [GaloisRepresentation(E,p): p in PrimesUpTo(20)];
 

gens = [[7, 6, 306, 307], [43, 40, 218, 45], [1, 0, 8, 1], [1, 8, 0, 1], [1, 4, 4, 17], [43, 42, 130, 283], [112, 3, 109, 2], [305, 8, 304, 9], [268, 1, 215, 6]]
 
GL(2,Integers(312)).subgroup(gens)
 
Gens := [[7, 6, 306, 307], [43, 40, 218, 45], [1, 0, 8, 1], [1, 8, 0, 1], [1, 4, 4, 17], [43, 42, 130, 283], [112, 3, 109, 2], [305, 8, 304, 9], [268, 1, 215, 6]];
 
sub<GL(2,Integers(312))|Gens>;
 

The image H:=ρE(Gal(Q/Q))H:=\rho_E(\Gal(\overline{\Q}/\Q)) of the adelic Galois representation has level 312=23313 312 = 2^{3} \cdot 3 \cdot 13 , index 4848, genus 00, and generators

(76306307),(434021845),(1081),(1801),(14417),(4342130283),(11231092),(30583049),(26812156)\left(\begin{array}{rr} 7 & 6 \\ 306 & 307 \end{array}\right),\left(\begin{array}{rr} 43 & 40 \\ 218 & 45 \end{array}\right),\left(\begin{array}{rr} 1 & 0 \\ 8 & 1 \end{array}\right),\left(\begin{array}{rr} 1 & 8 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 1 & 4 \\ 4 & 17 \end{array}\right),\left(\begin{array}{rr} 43 & 42 \\ 130 & 283 \end{array}\right),\left(\begin{array}{rr} 112 & 3 \\ 109 & 2 \end{array}\right),\left(\begin{array}{rr} 305 & 8 \\ 304 & 9 \end{array}\right),\left(\begin{array}{rr} 268 & 1 \\ 215 & 6 \end{array}\right).

Input positive integer mm to see the generators of the reduction of HH to GL2(Z/mZ)\mathrm{GL}_2(\Z/m\Z):

The torsion field K:=Q(E[312])K:=\Q(E[312]) is a degree-4025548840255488 Galois extension of Q\Q with Gal(K/Q)\Gal(K/\Q) isomorphic to the projection of HH to GL2(Z/312Z)\GL_2(\Z/312\Z).

The table below list all primes \ell for which the Serre invariants associated to the mod-\ell Galois representation are exceptional.

\ell Reduction type Serre weight Serre conductor
22 additive 22 39=313 39 = 3 \cdot 13
33 split multiplicative 44 520=23513 520 = 2^{3} \cdot 5 \cdot 13
55 nonsplit multiplicative 66 312=23313 312 = 2^{3} \cdot 3 \cdot 13
1313 split multiplicative 1414 120=2335 120 = 2^{3} \cdot 3 \cdot 5

Isogenies

gp: ellisomat(E)
 

This curve has non-trivial cyclic isogenies of degree dd for d=d= 2 and 4.
Its isogeny class 1560e consists of 4 curves linked by isogenies of degrees dividing 4.

Twists

This elliptic curve is its own minimal quadratic twist.

Growth of torsion in number fields

The number fields KK of degree less than 24 such that E(K)torsE(K)_{\rm tors} is strictly larger than E(Q)torsE(\Q)_{\rm tors} Z/2Z\cong \Z/{2}\Z are as follows:

[K:Q][K:\Q] KK E(K)torsE(K)_{\rm tors} Base change curve
22 Q(39)\Q(\sqrt{-39}) Z/2ZZ/2Z\Z/2\Z \oplus \Z/2\Z not in database
22 Q(3)\Q(\sqrt{3}) Z/4Z\Z/4\Z not in database
22 Q(13)\Q(\sqrt{-13}) Z/4Z\Z/4\Z not in database
44 Q(3,13)\Q(\sqrt{3}, \sqrt{-13}) Z/2ZZ/4Z\Z/2\Z \oplus \Z/4\Z not in database
44 4.2.5616.1 Z/8Z\Z/8\Z not in database
88 8.0.14412774445056.25 Z/2ZZ/4Z\Z/2\Z \oplus \Z/4\Z not in database
88 8.0.2846967791616.7 Z/8Z\Z/8\Z not in database
88 8.0.5330168064.4 Z/2ZZ/8Z\Z/2\Z \oplus \Z/8\Z not in database
88 8.2.3238077098880000.3 Z/6Z\Z/6\Z not in database
1616 deg 16 Z/4ZZ/4Z\Z/4\Z \oplus \Z/4\Z not in database
1616 deg 16 Z/2ZZ/8Z\Z/2\Z \oplus \Z/8\Z not in database
1616 deg 16 Z/16Z\Z/16\Z not in database
1616 deg 16 Z/2ZZ/6Z\Z/2\Z \oplus \Z/6\Z not in database
1616 deg 16 Z/12Z\Z/12\Z not in database
1616 deg 16 Z/12Z\Z/12\Z not in database

We only show fields where the torsion growth is primitive. For fields not in the database, click on the degree shown to reveal the defining polynomial.

Iwasawa invariants

pp 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47
Reduction type add split nonsplit ord ord split ord ss ord ord ord ord ord ord ord
λ\lambda-invariant(s) - 6 1 1 1 2 1 1,1 1 1 1 1 1 1 1
μ\mu-invariant(s) - 0 0 0 0 0 0 0,0 0 0 0 0 0 0 0

An entry - indicates that the invariants are not computed because the reduction is additive.

pp-adic regulators

pp-adic regulators are not yet computed for curves that are not Γ0\Gamma_0-optimal.