E = EllipticCurve("f1")
E.isogeny_class()
Elliptic curves in class 15680f
sage: E.isogeny_class().curves
LMFDB label |
Cremona label |
Weierstrass coefficients |
j-invariant |
Discriminant |
Torsion structure |
Modular degree |
Faltings height |
Optimality |
15680.bv4 |
15680f1 |
[0,0,0,7252,378672] |
1367631/2800 |
−86354742476800 |
[2] |
36864 |
1.3585
|
Γ0(N)-optimal |
15680.bv3 |
15680f2 |
[0,0,0,−55468,4066608] |
611960049/122500 |
3778019983360000 |
[2,2] |
73728 |
1.7051
|
|
15680.bv2 |
15680f3 |
[0,0,0,−274988,−51867088] |
74565301329/5468750 |
168661606400000000 |
[2] |
147456 |
2.0517
|
|
15680.bv1 |
15680f4 |
[0,0,0,−839468,296028208] |
2121328796049/120050 |
3702459583692800 |
[2] |
147456 |
2.0517
|
|
The elliptic curves in class 15680f have
rank 2.
The elliptic curves in class 15680f do not have complex multiplication.
sage: E.isogeny_class().matrix()
The i,j entry is the smallest degree of a cyclic isogeny between the i-th and j-th curve in the isogeny class, in the Cremona numbering.
⎝⎜⎜⎛1244212242144241⎠⎟⎟⎞
sage: E.isogeny_graph().plot(edge_labels=True)
The vertices are labelled with Cremona labels.