Properties

Label 15680f
Number of curves $4$
Conductor $15680$
CM no
Rank $2$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
E = EllipticCurve("f1")
 
E.isogeny_class()
 

Elliptic curves in class 15680f

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
15680.bv4 15680f1 \([0, 0, 0, 7252, 378672]\) \(1367631/2800\) \(-86354742476800\) \([2]\) \(36864\) \(1.3585\) \(\Gamma_0(N)\)-optimal
15680.bv3 15680f2 \([0, 0, 0, -55468, 4066608]\) \(611960049/122500\) \(3778019983360000\) \([2, 2]\) \(73728\) \(1.7051\)  
15680.bv2 15680f3 \([0, 0, 0, -274988, -51867088]\) \(74565301329/5468750\) \(168661606400000000\) \([2]\) \(147456\) \(2.0517\)  
15680.bv1 15680f4 \([0, 0, 0, -839468, 296028208]\) \(2121328796049/120050\) \(3702459583692800\) \([2]\) \(147456\) \(2.0517\)  

Rank

sage: E.rank()
 

The elliptic curves in class 15680f have rank \(2\).

Complex multiplication

The elliptic curves in class 15680f do not have complex multiplication.

Modular form 15680.2.a.f

sage: E.q_eigenform(10)
 
\(q - q^{5} - 3 q^{9} - 4 q^{11} - 6 q^{13} - 2 q^{17} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

sage: E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the Cremona numbering.

\(\left(\begin{array}{rrrr} 1 & 2 & 4 & 4 \\ 2 & 1 & 2 & 2 \\ 4 & 2 & 1 & 4 \\ 4 & 2 & 4 & 1 \end{array}\right)\)

Isogeny graph

sage: E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with Cremona labels.