Properties

Label 15680f
Number of curves 44
Conductor 1568015680
CM no
Rank 22
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
E = EllipticCurve("f1")
 
E.isogeny_class()
 

Elliptic curves in class 15680f

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
15680.bv4 15680f1 [0,0,0,7252,378672][0, 0, 0, 7252, 378672] 1367631/28001367631/2800 86354742476800-86354742476800 [2][2] 3686436864 1.35851.3585 Γ0(N)\Gamma_0(N)-optimal
15680.bv3 15680f2 [0,0,0,55468,4066608][0, 0, 0, -55468, 4066608] 611960049/122500611960049/122500 37780199833600003778019983360000 [2,2][2, 2] 7372873728 1.70511.7051  
15680.bv2 15680f3 [0,0,0,274988,51867088][0, 0, 0, -274988, -51867088] 74565301329/546875074565301329/5468750 168661606400000000168661606400000000 [2][2] 147456147456 2.05172.0517  
15680.bv1 15680f4 [0,0,0,839468,296028208][0, 0, 0, -839468, 296028208] 2121328796049/1200502121328796049/120050 37024595836928003702459583692800 [2][2] 147456147456 2.05172.0517  

Rank

sage: E.rank()
 

The elliptic curves in class 15680f have rank 22.

Complex multiplication

The elliptic curves in class 15680f do not have complex multiplication.

Modular form 15680.2.a.f

sage: E.q_eigenform(10)
 
qq53q94q116q132q17+O(q20)q - q^{5} - 3 q^{9} - 4 q^{11} - 6 q^{13} - 2 q^{17} + O(q^{20}) Copy content Toggle raw display

Isogeny matrix

sage: E.isogeny_class().matrix()
 

The i,ji,j entry is the smallest degree of a cyclic isogeny between the ii-th and jj-th curve in the isogeny class, in the Cremona numbering.

(1244212242144241)\left(\begin{array}{rrrr} 1 & 2 & 4 & 4 \\ 2 & 1 & 2 & 2 \\ 4 & 2 & 1 & 4 \\ 4 & 2 & 4 & 1 \end{array}\right)

Isogeny graph

sage: E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with Cremona labels.