Properties

Label 156816m1
Conductor 156816156816
Discriminant 2.116×1013-2.116\times 10^{13}
j-invariant 359374 -\frac{35937}{4}
CM no
Rank 11
Torsion structure trivial

Related objects

Downloads

Learn more

Show commands: Magma / Oscar / PariGP / SageMath

Minimal Weierstrass equation

Minimal Weierstrass equation

Simplified equation

y2=x311979x+551034y^2=x^3-11979x+551034 Copy content Toggle raw display (homogenize, simplify)
y2z=x311979xz2+551034z3y^2z=x^3-11979xz^2+551034z^3 Copy content Toggle raw display (dehomogenize, simplify)
y2=x311979x+551034y^2=x^3-11979x+551034 Copy content Toggle raw display (homogenize, minimize)

comment: Define the curve
 
sage: E = EllipticCurve([0, 0, 0, -11979, 551034])
 
gp: E = ellinit([0, 0, 0, -11979, 551034])
 
magma: E := EllipticCurve([0, 0, 0, -11979, 551034]);
 
oscar: E = elliptic_curve([0, 0, 0, -11979, 551034])
 
sage: E.short_weierstrass_model()
 
magma: WeierstrassModel(E);
 
oscar: short_weierstrass_model(E)
 

Mordell-Weil group structure

Z\Z

magma: MordellWeilGroup(E);
 

Mordell-Weil generators

PPh^(P)\hat{h}(P)Order
(55,242)(55, 242)1.27046044097600859072898629641.2704604409760085907289862964\infty

Integral points

(74,±1016)(-74,\pm 1016), (55,±242)(55,\pm 242) Copy content Toggle raw display

comment: Integral points
 
sage: E.integral_points()
 
magma: IntegralPoints(E);
 

Invariants

Conductor: NN  =  156816 156816  = 24341122^{4} \cdot 3^{4} \cdot 11^{2}
comment: Conductor
 
sage: E.conductor().factor()
 
gp: ellglobalred(E)[1]
 
magma: Conductor(E);
 
oscar: conductor(E)
 
Discriminant: Δ\Delta  =  21159411204096-21159411204096 = 121436116-1 \cdot 2^{14} \cdot 3^{6} \cdot 11^{6}
comment: Discriminant
 
sage: E.discriminant().factor()
 
gp: E.disc
 
magma: Discriminant(E);
 
oscar: discriminant(E)
 
j-invariant: jj  =  359374 -\frac{35937}{4}  = 12233113-1 \cdot 2^{-2} \cdot 3^{3} \cdot 11^{3}
comment: j-invariant
 
sage: E.j_invariant().factor()
 
gp: E.j
 
magma: jInvariant(E);
 
oscar: j_invariant(E)
 
Endomorphism ring: End(E)\mathrm{End}(E) = Z\Z
Geometric endomorphism ring: End(EQ)\mathrm{End}(E_{\overline{\Q}})  =  Z\Z    (no potential complex multiplication)
sage: E.has_cm()
 
magma: HasComplexMultiplication(E);
 
Sato-Tate group: ST(E)\mathrm{ST}(E) = SU(2)\mathrm{SU}(2)
Faltings height: hFaltingsh_{\mathrm{Faltings}} ≈ 1.29428833101654123875441317831.2942883310165412387544131783
gp: ellheight(E)
 
magma: FaltingsHeight(E);
 
oscar: faltings_height(E)
 
Stable Faltings height: hstableh_{\mathrm{stable}} ≈ 1.1471126302766441883914133506-1.1471126302766441883914133506
magma: StableFaltingsHeight(E);
 
oscar: stable_faltings_height(E)
 
abcabc quality: QQ ≈ 1.00606837660585141.0060683766058514
Szpiro ratio: σm\sigma_{m} ≈ 3.34053517367656873.3405351736765687

BSD invariants

Analytic rank: ranr_{\mathrm{an}} = 1 1
sage: E.analytic_rank()
 
gp: ellanalyticrank(E)
 
magma: AnalyticRank(E);
 
Mordell-Weil rank: rr = 1 1
comment: Rank
 
sage: E.rank()
 
gp: [lower,upper] = ellrank(E)
 
magma: Rank(E);
 
Regulator: Reg(E/Q)\mathrm{Reg}(E/\Q) ≈ 1.27046044097600859072898629641.2704604409760085907289862964
comment: Regulator
 
sage: E.regulator()
 
G = E.gen \\ if available
 
matdet(ellheightmatrix(E,G))
 
magma: Regulator(E);
 
Real period: Ω\Omega ≈ 0.662637928720882840693598625520.66263792872088284069359862552
comment: Real Period
 
sage: E.period_lattice().omega()
 
gp: if(E.disc>0,2,1)*E.omega[1]
 
magma: (Discriminant(E) gt 0 select 2 else 1) * RealPeriod(E);
 
Tamagawa product: pcp\prod_{p}c_p = 4 4  = 212 2\cdot1\cdot2
comment: Tamagawa numbers
 
sage: E.tamagawa_numbers()
 
gp: gr=ellglobalred(E); [[gr[4][i,1],gr[5][i][4]] | i<-[1..#gr[4][,1]]]
 
magma: TamagawaNumbers(E);
 
oscar: tamagawa_numbers(E)
 
Torsion order: #E(Q)tor\#E(\Q)_{\mathrm{tor}} = 11
comment: Torsion order
 
sage: E.torsion_order()
 
gp: elltors(E)[1]
 
magma: Order(TorsionSubgroup(E));
 
oscar: prod(torsion_structure(E)[1])
 
Special value: L(E,1) L'(E,1) ≈ 3.36742110052064704780193019763.3674211005206470478019301976
comment: Special L-value
 
r = E.rank();
 
E.lseries().dokchitser().derivative(1,r)/r.factorial()
 
gp: [r,L1r] = ellanalyticrank(E); L1r/r!
 
magma: Lr1 where r,Lr1 := AnalyticRank(E: Precision:=12);
 
Analytic order of Ш: Шan{}_{\mathrm{an}}  ≈  11    (rounded)
comment: Order of Sha
 
sage: E.sha().an_numerical()
 
magma: MordellWeilShaInformation(E);
 

BSD formula

3.367421101L(E,1)=#Ш(E/Q)ΩEReg(E/Q)pcp#E(Q)tor210.6626381.2704604123.367421101\displaystyle 3.367421101 \approx L'(E,1) = \frac{\# Ш(E/\Q)\cdot \Omega_E \cdot \mathrm{Reg}(E/\Q) \cdot \prod_p c_p}{\#E(\Q)_{\rm tor}^2} \approx \frac{1 \cdot 0.662638 \cdot 1.270460 \cdot 4}{1^2} \approx 3.367421101

# self-contained SageMath code snippet for the BSD formula (checks rank, computes analytic sha)
 
E = EllipticCurve(%s); r = E.rank(); ar = E.analytic_rank(); assert r == ar;
 
Lr1 = E.lseries().dokchitser().derivative(1,r)/r.factorial(); sha = E.sha().an_numerical();
 
omega = E.period_lattice().omega(); reg = E.regulator(); tam = E.tamagawa_product(); tor = E.torsion_order();
 
assert r == ar; print("analytic sha: " + str(RR(Lr1) * tor^2 / (omega * reg * tam)))
 
/* self-contained Magma code snippet for the BSD formula (checks rank, computes analytic sha) */
 
E := EllipticCurve(%s); r := Rank(E); ar,Lr1 := AnalyticRank(E: Precision := 12); assert r eq ar;
 
sha := MordellWeilShaInformation(E); omega := RealPeriod(E) * (Discriminant(E) gt 0 select 2 else 1);
 
reg := Regulator(E); tam := &*TamagawaNumbers(E); tor := #TorsionSubgroup(E);
 
assert r eq ar; print "analytic sha:", Lr1 * tor^2 / (omega * reg * tam);
 

Modular invariants

Modular form 156816.2.a.g

q3q54q7+q13+3q174q19+O(q20) q - 3 q^{5} - 4 q^{7} + q^{13} + 3 q^{17} - 4 q^{19} + O(q^{20}) Copy content Toggle raw display

comment: q-expansion of modular form
 
sage: E.q_eigenform(20)
 
\\ actual modular form, use for small N
 
[mf,F] = mffromell(E)
 
Ser(mfcoefs(mf,20),q)
 
\\ or just the series
 
Ser(ellan(E,20),q)*q
 
magma: ModularForm(E);
 

For more coefficients, see the Downloads section to the right.

Modular degree: 414720
comment: Modular degree
 
sage: E.modular_degree()
 
gp: ellmoddegree(E)
 
magma: ModularDegree(E);
 
Γ0(N) \Gamma_0(N) -optimal: yes
Manin constant: 1
comment: Manin constant
 
magma: ManinConstant(E);
 

Local data at primes of bad reduction

This elliptic curve is not semistable. There are 3 primes pp of bad reduction:

pp Tamagawa number Kodaira symbol Reduction type Root number ordp(N)\mathrm{ord}_p(N) ordp(Δ)\mathrm{ord}_p(\Delta) ordp(den(j))\mathrm{ord}_p(\mathrm{den}(j))
22 22 I6I_{6}^{*} additive -1 4 14 2
33 11 IVIV additive 1 4 6 0
1111 22 I0I_0^{*} additive -1 2 6 0

comment: Local data
 
sage: E.local_data()
 
gp: ellglobalred(E)[5]
 
magma: [LocalInformation(E,p) : p in BadPrimes(E)];
 
oscar: [(p,tamagawa_number(E,p), kodaira_symbol(E,p), reduction_type(E,p)) for p in bad_primes(E)]
 

Galois representations

The \ell-adic Galois representation has maximal image for all primes \ell except those listed in the table below.

prime \ell mod-\ell image \ell-adic image
22 2G 4.8.0.2
33 3B 3.4.0.1

comment: mod p Galois image
 
sage: rho = E.galois_representation(); [rho.image_type(p) for p in rho.non_surjective()]
 
magma: [GaloisRepresentation(E,p): p in PrimesUpTo(20)];
 

gens = [[119, 0, 0, 131], [1, 33, 33, 34], [131, 99, 0, 65], [121, 12, 120, 121], [45, 88, 44, 89], [1, 0, 12, 1], [111, 88, 88, 111]]
 
GL(2,Integers(132)).subgroup(gens)
 
Gens := [[119, 0, 0, 131], [1, 33, 33, 34], [131, 99, 0, 65], [121, 12, 120, 121], [45, 88, 44, 89], [1, 0, 12, 1], [111, 88, 88, 111]];
 
sub<GL(2,Integers(132))|Gens>;
 

The image H:=ρE(Gal(Q/Q))H:=\rho_E(\Gal(\overline{\Q}/\Q)) of the adelic Galois representation has level 132=22311 132 = 2^{2} \cdot 3 \cdot 11 , index 128128, genus 11, and generators

(11900131),(1333334),(13199065),(12112120121),(45884489),(10121),(1118888111)\left(\begin{array}{rr} 119 & 0 \\ 0 & 131 \end{array}\right),\left(\begin{array}{rr} 1 & 33 \\ 33 & 34 \end{array}\right),\left(\begin{array}{rr} 131 & 99 \\ 0 & 65 \end{array}\right),\left(\begin{array}{rr} 121 & 12 \\ 120 & 121 \end{array}\right),\left(\begin{array}{rr} 45 & 88 \\ 44 & 89 \end{array}\right),\left(\begin{array}{rr} 1 & 0 \\ 12 & 1 \end{array}\right),\left(\begin{array}{rr} 111 & 88 \\ 88 & 111 \end{array}\right).

Input positive integer mm to see the generators of the reduction of HH to GL2(Z/mZ)\mathrm{GL}_2(\Z/m\Z):

The torsion field K:=Q(E[132])K:=\Q(E[132]) is a degree-475200475200 Galois extension of Q\Q with Gal(K/Q)\Gal(K/\Q) isomorphic to the projection of HH to GL2(Z/132Z)\GL_2(\Z/132\Z).

The table below list all primes \ell for which the Serre invariants associated to the mod-\ell Galois representation are exceptional.

\ell Reduction type Serre weight Serre conductor
22 additive 22 9801=34112 9801 = 3^{4} \cdot 11^{2}
33 additive 66 88=2311 88 = 2^{3} \cdot 11
1111 additive 6262 1296=2434 1296 = 2^{4} \cdot 3^{4}

Isogenies

gp: ellisomat(E)
 

This curve has non-trivial cyclic isogenies of degree dd for d=d= 3.
Its isogeny class 156816m consists of 2 curves linked by isogenies of degree 3.

Twists

The minimal quadratic twist of this elliptic curve is 162a1, its twist by 4444.

Growth of torsion in number fields

The number fields KK of degree less than 24 such that E(K)torsE(K)_{\rm tors} is strictly larger than E(Q)torsE(\Q)_{\rm tors} (which is trivial) are as follows:

[K:Q][K:\Q] KK E(K)torsE(K)_{\rm tors} Base change curve
22 Q(11)\Q(\sqrt{11}) Z/3Z\Z/3\Z not in database
33 3.1.324.1 Z/2Z\Z/2\Z not in database
66 6.0.419904.2 Z/2ZZ/2Z\Z/2\Z \oplus \Z/2\Z not in database
66 6.2.419169168.3 Z/4Z\Z/4\Z not in database
66 6.0.1676676672.10 Z/4Z\Z/4\Z not in database
66 6.0.745189632.1 Z/3Z\Z/3\Z not in database
66 6.2.558892224.3 Z/6Z\Z/6\Z not in database
1212 deg 12 Z/4ZZ/4Z\Z/4\Z \oplus \Z/4\Z not in database
1212 deg 12 Z/3ZZ/3Z\Z/3\Z \oplus \Z/3\Z not in database
1212 deg 12 Z/2ZZ/6Z\Z/2\Z \oplus \Z/6\Z not in database
1212 deg 12 Z/12Z\Z/12\Z not in database
1212 deg 12 Z/12Z\Z/12\Z not in database
1818 18.6.1082148269427853519423323814678757376.1 Z/9Z\Z/9\Z not in database
1818 18.0.24435034619335433722802504466432.2 Z/12Z\Z/12\Z not in database

We only show fields where the torsion growth is primitive. For fields not in the database, click on the degree shown to reveal the defining polynomial.

Iwasawa invariants

No Iwasawa invariant data is available for this curve.

pp-adic regulators

pp-adic regulators are not yet computed for curves that are not Γ0\Gamma_0-optimal.